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Technology learning can make a significant difference to renewable energy as a mitigation option in

South Africa’s electricity sector. This article considers scenarios implemented in a Markal energy model

used for mitigation analysis. It outlines the empirical evidence that unit costs of renewable energy

technologies decline, considers the theoretical background and how this can be implemented in

modeling. Two scenarios are modelled, assuming 27% and 50% of renewable electricity by 2050,

respectively. The results show a dramatic shift in the mitigation costs. In the less ambitious scenario,

instead of imposing a cost of Rand 52/t CO2-eq (at 10% discount rate), reduced costs due to technology

learning turn renewables into negative cost option. Our results show that technology learning flips the

costs, saving R143. At higher penetration rate, the incremental costs added beyond the base case decline

from R92 per ton to R3. Including assumptions about technology learning turns renewable from a

higher-cost mitigation option to one close to zero. We conclude that a future world in which global

investment in renewables drives down unit costs makes it a much more cost-effective and sustainable

mitigation option in South Africa.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Technology is an important driver of energy development, and
technology costs change over time. One of the most important
factors shaping the results of energy models are the assumptions
they make about technology learning (Energy Innovations, 1997;
Fisher and Grubb, 1997; IEA & OECD, 2000, 2006; Repetto and
Austin, 1997)—the extent to which technologies get cheaper over
time. There is good evidence that the unit costs of new
technologies decline as more are built and technology design
gets smarter. This article considers technology learning for
renewable energy, particularly as it affects climate change
mitigation in South Africa, analysed quantitatively through energy
modeling.

The article starts with historical evidence for technology
learning presented from the international literature. It then
considers what drives technology learning and explores, based
on spreadsheet analysis, different ways of representing technol-
ogy learning quantitatively. The results reported here are based on
analysis for renewable energy technologies (RETs) which formed
part of the energy modeling conducted for the long-term
ll rights reserved.

kler).
mitigation scenarios (LTMS) for South Africa (Hughes et al.,
2007; Winkler, 2007). The base case is briefly introduced, before
showing the implications of technology learning for renewable
energy and mitigation. Before concluding, we point to some areas
for future work.
2. Analysing technology learning

The two central explanatory factors why new technologies get
cheaper over time are (i) learning-by-doing and (ii) economies of
scale. The first factor suggests that we learn to do things more
smartly, garnering the easier cost savings first. The first proto-type
is typically much more expensive than later models, which are
produced in smarter and more cost-effective ways. Learning by
experience reduces costs (Arrow, 1962) and this general finding
has been found true for energy technologies as well (IEA & OECD,
2000).

Secondly, later units are often part of larger production runs
than the first demonstration modules or pilot plants. Economies
of scale often allow savings as well.

The effects of both factors together have been assessed by
learning ratios, measuring the reduction of cost per unit of
installed capacity for each doubling of cumulative capacity.

www.elsevier.com/locate/enpol
dx.doi.org/10.1016/j.enpol.2009.06.062
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Fig. 1. Learning curves for new and mature energy technologies. Source: IEA &

OECD (2000).
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Fig. 2. Reduction in costs, with levelised costs (c/kWh) indexed for base year 2003.

Source: UNEP (2006).
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2.1. Evidence for technology learning

The unit costs of technologies, typically measured in $/
installed kW, change over time. A measure of this learning is the
‘progress ratio’, which is the reduced cost per unit installed for
each doubling of global cumulative capacity, given as a percentage
of the initial cost. The ‘learning ratio’ refers to the percentage
reduction in cost over the same doubling period (i.e., it is 100%
minus the ‘progress ratio’). Empirical data on learning for energy
technologies have been gathered (IEA & OECD, 2000; Junginger et
al., 2004; Laitner, 2002; Nemet, 2006; NREL, 1999; Papineau,
2006; World Bank, 1999). Learning curves show the decline in
costs (either in S/kW, i.e. units of installed capacity, or sometimes
in levelised costs reported in units of c/kWh for electricity
generation technologies) as cumulative electricity production
doubles.

Fig. 1 from (IEA & OECD, 2000) indicates photovoltaics declined
by 35% in price for doublings between 1980 and 1995, wind by
18%, electricity from biomass by 15%; while supercritical coal
declined by only 3% and NGCC by 4%. It is clear that newer
technologies, be they renewable or otherwise, have higher
learning ratios than mature technologies which have integrated
most cost savings decades or centuries earlier.

Note that in Fig. 1, both axes are logarithmic and that the
learning curves are linear in this log–log space. Shown in ‘normal’
space, the curves would decline steeply at first, and less steeply
later. Regression analysis would give them best fit with logarith-
mic or exponential curves.

A more recent study focusing on RETs presented learning by
indexing all costs for the base year.

Fig. 2 shows which RET costs decline fastest, but loses
information about which RETs are more cost-effective overall.
All technologies are indexed to 1.0 at the start year, while in unit
costs ($/kW) differ substantially.

Most of the literature focuses on learning as a function of
global increases in capacity and production of energy technolo-
gies. However, there may also be local cost reductions that can be
achieved, e.g. local manufacture of turbine blades, above a certain
threshold of installed capacity. It is possible to include both global
and local learning in models, given data on thresholds and
associated cost reductions.

In projecting the development of energy technologies into
the future, then, one can reasonably assume that technology costs
will change over time. The next sections examines how
technology learning can be analysed in the context of modeling
energy futures, also taking into account limits on growth in
capacity.
2.2. Learning curves and declining unit costs

The learning curve model has been summarised by Nemet
(2006) in three equations:

Ct ¼ C0
qt

q0

� ��b

ð1Þ

PR ¼ 2�b
ð2Þ

LR ¼ ð1� PRÞ ð3Þ

where Ct (in $/kW) is the unit cost of the technology, q represents
cumulative installed capacity, b is the exponent defining the slope
of the power function, PR is the progress ratio and LR the learning
ratio. The factor b is the central parameter (Nemet, 2006).

Eq. (1) says that the cost at a future time t can be calculated by
taking the initial cost (C0), multiplying that by the ratio of the
cumulative installed capacity reached by t, to the power of an
exponent b. The exponent, a key parameter, is negative since costs
decline. Eqs. 2 and 3 convert this parameter into single
percentages. The progress ratio (PR) can be understood as the
reduced cost per unit, whereas the learning ratio (LR) is the saved
cost for an increase in cumulative output. For example, if after a
global doubling of installed capacity, the unit cost of a technology
declines from $1.50/kW installed to $1/kW installed, the PR is 67%
and the LR 33%.

An important implication is that a single percentage (PR or LR)
can show a changing rate of cost reduction over time. Since the
percentage enters as an exponent, the resulting cost function is
logarithmic.

Given the formulation of the technology learning model, the
rate of cost reduction adjusts to changes in the growth of
production. The rate of learning declines over time—or rather as
capacity doubles. The function graphs as a straight line in log–log
space, but in normal space, its logarithmic shape indicates a
decreasing rate of learning. A fairly good fit with empirical data
has been found (Nemet, 2006).

If technologies cost less per unit, one could expect more of
them to be built. A least-cost modeling approach would choose
more of cheaper technologies. When used in modeling energy
systems into the future, it would be worth considering whether
there are any limits to this growth.
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Table 1
Range of reported learning ratios for electricity generating technologies.

Energy

technology

Solar

thermal

power

(World

Bank,

1999)

Concentrating

solar power

(trough)

(NREL, 1999)

Experience

curves (IEA

& OECD,

2000)

Skip Laitner,

US EPA

(Laitner,

2002)

Renewables

for power

generation

(IEA, 2003)

Global

experience

curves for

wind

(Junginger et

al., 2004)

Economic

perspective

(Papineau,

2006)

Energy Technology

Perspectivestechnology

perspectives (IEA & OECD, 2006),

the figures in brackets indicate

assumed future ranges

Changing climate

(UNEP, 2006)

assumed futurea

New renewable energy technologies
Small-scale

biomass for

electricityc

15%

(1980–1995)

5% (12–15%) 17% (2003–2025)

Wind 18%

(1980–1995)

13%

(1995–2010)

19%; (avg%

(average PR

between 77%

and 89%)

10–12%

(1990–2000)

5% (4–8%; 15–19%) 40% (2003–2025)

Solar

photovoltaic

35%

(1980–1995)

17%

(1992–2000)

18% (20%) 68% decline from

2003 to 2025

(no.number of

doublings not

stated)

Solar

thermal,

parabolic

trough

12%

(range of

8–15%)

17% historical,

estimate 15%

future

32%

(1997–2020)

15%d 10–12%

(1990–2000)

5% 22% (2003–2025)

Solar

thermal,

power tower

12%

(range of

8–15%)

11%

(1996–2020)

20% 10–12%

(1990–2000)

5%

Geothermalb

Small hydro 5%

Tidal 5%

New fossil fueled electricity generation
Supercritical

coalb

3%

(1980–1995)

7%

(1995–2010)

Natural gas

combined

cycle

4%

(1980–1995)

7%

(1995–2010)

3The LTMS study used a learning rate of 25% for PV in the model generally, but also examined a higher rate of 35% in a PV mitigation action, making a more optimistic

assumption about future PV costs.

a The UNEP study assumed cost reductions for 2003–2025, which could see more than a doubling.
b No studies found for some power plants analysed in the LTMS, notably integrated gasification combined cycle, fluidized bed combustion or advanced water

reactors.
c Small-scale biomass is assumed to be less than 50MWe, and in South Africa would include generation from bagasse.
d IEA (2003) gives a general progress ratio of 85% (LR ¼ 15%) for solar thermal generally, but cites a higher learning rate of 20% for concentrating solar power (CSP)

systems (p. 94). For dish/engine systems, the range given is 10 to –25%.

Table 2
Learning ratios for this study and summary of ranges in the literature.

Energy technology Range of learning

rates in the literature*

(%)

Learning ratios,

this study (%)

Wind 5–40 19

Solar photovoltaic 17–68 25

35

Solar thermal, parabolic

trough

5–32 15

Solar thermal, power tower 5–20 20

Geothermal

Small hydro 5 5

Biomass 5–17 15

Tidal 5 5

Supercritical coal 3–7 4

Natural gas combined cycle 4–7 5
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2.3. Comparing estimates of technology learning

Several studies have examined learning across a range of
technologies. Some of these have focused on types of energy
technologies, and particular focus has been given in the literature
to RETs. Table 1 compares learning ratios from studies that have
examined more than one energy technology, as well as others that
have focused on particular technologies.

As shown in Table 1, technology learning ratios were not found
for all technologies. Applying learning to only some technologies
will favour those technologies to which it is applied. Future work
should apply technology learning more comprehensively and
include all end-use technologies in the model to which it applies.

Values were chosen for use in this study, based on range cited
in the peer-reviewed literature cited above. Table 2 summarises
the learning ratios for new electricity generating technologies
assumed in the LTMS study (Hughes et al., 2007; Winkler, 2007).
2.4. Learning ratios constant over time

Does the rate of technology learning remain constant over
doublings? A single number such as the learning ratio can
represent changing costs over time, including multiple doublings.
Historical evidence for PV supports this. ‘‘Between 1968 and 1998,
PV module costs declined by an average rate of 20.2% each time
the total cumulative installed capacity doubled (for a total of
greater than thirteen doublings)’’ (Harmon, 2000). Harmon (2000)
goes on to suggest continued investment can achieve future PV
module cost reductions. Other findings indicate that annual
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Fig. 3. Growth in global capacity for different technologies.
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growth rates for PV have reduce costs by a nearly 100 times over
half a decade (Nemet, 2006).

A further question is whether the doubling time remains
constant. Since each time, twice the capacity needs to be installed
to achieve a further doubling, that doubling could take longer. The
approach taken in this study is to increase the doubling time by
1.5 for each doubling, i.e. half-way between 1.0 (same doubling
time for each successive doubling) and 2.0 (twice as long each
time).
2.5. Upper limits on growth of capacity

One might expect technologies to grow rapidly in installed
capacity while they are new, but at some point limits may emerge.
Constraints such as available materials, suitable sites or limited
energy resources may contribute to an upper limit. The growth of
capacity and doubling time for each technology also depends on
diffusion or market penetration of the technology. Competition
among different technologies, economical competitiveness, phy-
sical or social constraints on the technology build up, or
alternatively certain considerations for capacity expansion, deter-
mine the rate of market penetration. Detailed examination of
technology-specific factors is beyond the scope of this paper.

Upper limits in the growth of installed capacity can be
represented in a logistic function. These functions are typically
S-shaped, that is their growth does not stop, but slows down at
higher levels. For technology learning, it is worth considering
upper limits on global installed capacity.

dC

dt
¼ rC 1�

C

K

� �
ð4Þ

Here C is capacity (in kW installed in this case), K is maximum
capacity (kW installed) and r is the annual growth rate. The
second term, in brackets, on the right-hand side, effectively limits
growth from becoming exponential. As the installed capacity
approaches its maximum, C/M approaches 1, the right-hand side
approaches zero and there is no further change in costs (dC/dt).

This differential equation can be solved, yielding

Ct ¼
ert

ð1=C0Þ � ð1=MÞ þ ðert=MÞ
ð5Þ

where Ct is the installed capacity at a future time, C0 is the initial
capacity in year 0, and time t is measured in years. This formula
can be used to project future capacity growth, based on the
growth rate r, initial capacity C and maximum capacity M. How
these equations translate into figures for different energy
technologies is illustrated below (see Figs. 3 and 4), using data
presented in the following sections.

Where maximum global potentials were not found in the
literature (IEA & OECD, 2000; Junginger et al., 2004; Laitner, 2002;
Nemet, 2006; NREL, 1999; Papineau, 2006; World Bank, 1999),
they were estimated. The maximum global capacities used for this
study are reported in Table 3.

Using these maximum global potentials, the growth of technol-
ogies can be represented in the form of a logistic equation, i.e. one that
does not increase exponentially forever, but slows as it approaches an
upper limit and eventually flattens out. If global cumulative capacity
approaches an upper limit, the rate of growth in installed capacity will
slow, and consequently learning would slow accordingly. In addition,
there is information on the rate of the doubling based on the historical
growth rates. These doubling times can be used to cross-check
doubling resulting from the logistic equation.
2.6. Estimates of doubling times

Since the reduction in unit costs is a function of a doubling of
global cumulative production, it is helpful to know the time in which
a technology might be expected to double its capacity. The production
of all new energy technologies does not increase at the same rate. This
is reflected in Table 4, showing information from various sources on
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Table 3
Estimated maximum global capacity.

Energy technology Maximum level this

technology can

reach globally (GW)

Wind 2000

Solar photovoltaic 500

Solar thermal, parabolic trough 500

Solar thermal, power tower 500

Geothermal

Small hydro

Biomass

Tidal

Supercritical coal 3072

Natural gas combined cycle 3773

Table 4
Current status of renewable energy technologies.

Technology for

electricity

generation

Increase in installed

capacity in past five

years (%/yr)

Number of years for

doubling at

historical rate

Operating

capacity, end

1998 (GWe)

Wind �30 3 10

Solar

photovoltaic

�30 3 0.5

Solar thermal,

parabolic

trough

�5 14 0.4

Solar thermal,

power tower

�5 14 0.4

Geothermal �4 17 8

Small hydro �3 23 23

Biomass �3 23 40

Tidal 0 – 0.3

Sources: (Laitner, 2002; NREL, 1999; UNDP, UNDESA & WEC, 2000).
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Fig. 4. Cost reductions for RETs.
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the current status of RETs, based primarily on data from the World
Energy Assessment (UNDP, UNDESA & WEC, 2000) supplemented and
updated with information from more recent sources.

The past is not always a good predictor of the future, but it
provides an empirical basis to distinguish between different doubling
rates. The use of global energy models would be an alternative
methodology. The implied time of doubling in the exponential
function could be checked against expectations of doubling based
on past experience. The number of years for doubling are given by
ln(2)/growth rate, e.g. ln(2)/3% for biomass yields 23 years.
1 The MARKAL modeling framework was developed by the International

Energy Agency; the database used for LTMS was developed at the Energy Research

Centre over several years and projects.
3. Technology learning in energy modeling

The information presented in Section 2 was translated in LTMS
into an energy modeling framework. First, however, the modeling
framework is briefly introduced.
3.1. MARKAL model

Energy modeling provides a useful tool to explore the
implications of technology learning, allowing different assump-
tions about the future to be tested. Energy models are a powerful
way to explore various alternative energy futures quantitatively,
but it is important to understand the limitations of each tool. For
the LTMS, we used the MARKAL (short for Market Allocation)
model.1
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MARKAL is an optimising model, meaning that, subject to
available resources, a set of energy supply and use technologies,
and a set of required energy services and constraints, the model
determines the optimal configuration of an energy system that
will meet the demand for energy services. Optimisation follows an
objective, usually to minimize costs. The model is demand-driven,
in that it must meet projections of useful energy demand.
Working with a system model means that various balances are
maintained, e.g. that energy demand is met; that a specified
reserve margin is maintained; that plants for peak and base-load
are distinguished; that technologies have a limited life, etc. A full
description of the model used is contained in Hughes and Haw
(2007).

The strength of the MARKAL models lies in the ability to
identify the most cost-effective technology solutions for energy
systems. Constraints, which temper the drive to least cost, can
include environmental factors (e.g., emissions), limits on resource
availability and – relevant to this article – the penetration rates of
technologies.

MARKAL requires a large set of data, which can be divided into
several kinds:
1.
 Data on energy technologies—transformation (e.g., power
plants, refineries), distribution (e.g., pipelines) and end-use
(e.g., motors, lights) technologies—which would include
efficiency, capital cost, operation and maintenance costs,
equipment life, and environmental impacts/emissions.
2.
 Independent variables such as GDP and population that drive
demand.
3.
 The structure of the energy system.

4.
 Historical data on the existing energy infrastructure.

In MARKAL a ‘base case’ is constructed, against which other
scenarios are compared. The base case in LTMS is effectively a
simulation of the development of the energy system into the
future, and is tightly constrained to represent a ‘business as usual’
scenario.

The major drivers include GDP, population and technology
assumptions, reported fully in the LTMS technical report ((Wink-
ler, 2007); a fuller description of the energy system, the
characteristics of key energy technologies (such as power plants),
various cost components (captital, fixed and variable O&M)
efficiencies, fuel prices and other factors can be found in the
same report, as well as the energy modeling input (Hughes et al.,
2007)).

3.2. Learning ratios into modeling

Combining the information on learning ratios, historical
growth rates and maximum capacity globally, allows growth
paths for different RETs to be plotted. They are compared to
existing coal and gas-fired electricity generating technologies.

In interpreting Fig. 3, it should be noted that the scales of
capacity for various technologies differ and that the underlying
assumption is learning continues at historical rates into the
future. On that basis, the capacity of wind and PV might grow
rapidly enough to reach limits. Concentrated solar power and
parabolic trough come off such low bases that capacity remains
small—growth rates would have to increase before they would
reach an upper limit. Mature technologies, coal and gas start from
high installed capacity.

Adding estimates of current installed capacity, costs and
learning ratios to the data shows cost curves for the RETs in Fig. 4

The difference between quite rapid declines in unit costs for
some newer, RETs, and the mild reductions for mature types of
technologies are clearly illustrated in Fig. 4, for example, third
generation fossil fuel technologies. The latter went through their
learning curves in previous centuries. Photovoltaics show the
steepest decline in unit costs, followed by wind. Between the two
solar thermal electricity technologies considered, concentrated
solar power is expected to decline quicker and further than the
parabolic trough, based on the stated assumptions (see Table 2
above).

The cost reductions shown in Fig. 4 were applied in the
MARKAL modeling. In particular, the reductions in unit costs were
applied to the capital costs (the MARKAL parameter INVCOST) of
the relevant technologies over time.

The remainder of this article focuses on the implications of
technology learning as applied in the South African MARKAL
model. It considers the application of technology learning both to
the base case and to policy cases, in which RETs are modeled as
climate change mitigation options.
3.3. Learning in the base case?

An important question is whether to include technology
learning in the base case. The base case is the modelers’ reference
case, to which all other cases are compared. The question is
essentially whether one is comparing apples to oranges.

Including technology learning in the base case assumes that
business as usual will include technology learning. If the scenarios
then also include technology learning comparatively, the choice of
technologies by the model will be unaffected by the technology
learning as the costs of the technologies remain the same across
scenarios. In this case you would be comparing ‘‘apples with
apples’’. But will decision-makers base their decisions on
projected future costs of technology?

A base case including technology learning may be ‘optimal’,
but does it reflect future expectations? In the study for LTMS,
when technology learning was included in the base case, the
choice of technologies that make up the least-cost solution to
meet the demand for electricity shifts from what one would
expect to see, a base case dominated by coal, to a base case
dominated by renewables towards the end of the time horizon.
The expansion plan with learning was not ‘plausible’ in the sense
of looking very different to official projections (DME, 2003a; NER,
2004).

The matter was further complicated, in this study, by not
having the available data to apply technology learning to all
technologies in the MARKAL model. It is applied to a sub-set of
electricity generating technologies wind, two kinds of solar
thermal, photovoltaics, super critical coal and natural gas
combined cycle. Due to lack of data, technology learning is not
applied to fluidised bed combustion, IGCC or nuclear. This sub-set
of electricity generating technologies therefore has an advantage
not only over other electricity generating technologies, but also
over other end-use technologies such as solar water heating or
technologies that could be used to improve energy efficiency that
do not have technology learning specified within the model. So,
not all apples are treated equally.

If, in fact, the base case does not include technology learning
but is compared to an action case with technology learning, is that
a fair comparison? Clearly the technologies which have learning
in the policy case would have an advantage, given a least-cost
optimising context. Comparing action case with learning to base
case without compares apples to oranges.

It is worth considering the role of the base case in this respect.
The base case should be optimised, given best information.
Excluding technology learning from the base case, when we know
that in future the cost of technologies will likely change over the
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planning period does not allow us to adapt and use the best
information that we have at hand to inform an optimal future
path. Today’s least-cost solutions may not remain the least-cost
technologies over the modeling time horizon. This was pertinent
in the context of LTMS.

The LTMS study was faced with options to (1) include
technology learning in both the base case and policy cases; or
(2) exclude technology learning from all cases. Given the
advantages and disadvantages of both options, as examined here,
neither seemed attractive. The solution adopted for the LTMS
analysis was to conduct most of the analysis without learning in
either the base or policy (mitigation) cases. However, an
additional variation of the base case with technology learning
was run, and policy cases for technologies for which learning data
was available were reported against this base case. The next
section examines the results for RETs as a mitigation option in
South Africa.
4. Technology learning and mitigation costs for renewables

Various policy options are available to increase the share of
renewable energy in the fuel mix (Winkler, 2005). In 2003, South
Africa adopted a renewable energy target: ‘‘Government is setting
as its target 10,000 GWh (0.8 Mtoe) renewable energy contribu-
tion to final energy consumption by 2013, to be produced mainly
from biomass, wind, solar and small-scale hydro’’ (DME, 2003b).
Increasing the share of renewable electrical generation technol-
ogies beyond these levels was among the mitigation option
chosen for analysis in the LTMS process. In order to assess the
impact of increased utilisation of renewable technologies on GHG
emissions, various levels of penetration of renewables for
electricity generation were considered.

4.1. Twenty-seven percent of electricity generated by renewables

In this scenario, 15% of electricity dispatched must come from
domestic renewable resources by 2020. The technologies available
include South African hydro, wind, solar thermal, landfill gas, PV and
biomass. This is extrapolated to 27% by 2030, and remains at 27%
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until 2050. Each of these technologies has an upper limit of capacity
that can be built over the period, and a maximum rate at which
capacity can be added to any single technology type each year.

This scenario sees the introduction of solar power towers,
parabolic trough and wind. The extent to which each is introduced
can be seen in Fig. 5. The solar power tower comes into the mix
from 2014 and reaches its limit of 30 GW in 2045. The trough
starts off much smaller, but reaches 16 GW by 2050. Wind comes
in gradually, mostly at 25% availability, reaching a peak of 15 GW
installed capacity in 2030, but declining to 7 GW by 2050 likely
due to other renewable options becoming more economically
viable and the relatively short life-time of wind turbines.

Fig. 5 shows installed capacity (GW), not electricity generated
(kWh). Since RETs generally have lower availability factors (with
the exception of the power tower at 60%), more capacity needs to
be built for the same electricity output than for a high-availability
plant; thus the size of the grid in this case is 140 GW, 20 GW larger
than in the base case.

Table 5 below shows that the emission reductions in add up to
2010 Mt CO2 over the period. The cost of mitigation (or reducing
emissions through policy, technology and other measures) is the
taken as the difference in emissions with and without the policy;
divided by the difference in the costs. Since costs vary over time,
the discount rate affects the cost significantly, and it reported at
3% (recommended for long-term mitigation); 15% (closer to a
commercial rate of return) and the intermediate 10% (often used
for public investments in South Africa). The results for energy
system costs and as a share of GDP are reported for the central
value of 10% only (Tables 5–8).

The mitigation cost is R52/ton CO2-eq at a 10% discount rate,
reducing emission on average by 42 Mt CO2-eq per year. Fig. 6
shows the emission reductions in the renewable energy scenario,
without technology learning.

If technology learning is assumed for both the base case and
the renewable case, the mitigation costs decline significantly,
becoming negative at �R143/t CO2-eq. The total emission
reductions are also increased to 2757 Mt CO2-eq over the period.

Emission reductions increase with learning, even when
compared to the base case with learning (see Fig. 7). Annual
emission reductions are 15 Mt CO2-eq higher if technology
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Table 5
Mitigation and costs for 27% renewable electricitya scenario without technology

learning.

Discount rate 3% 10% 15%

Annual CO2-eq saving (Mt/yr)

42

Incremental Annual Costannual cost (R millions) 4177 2165 1241

Cost effectiveness (R/t CO2-eq) 100 52 30

Total CO2-eq saving (Mt,; 2003-–2050) 2010

% increase in energy system costs (at 10% discount rate) 0.63

% of GDP (at 10%) 0.13

a ‘Renewable electricity’ is used as a short-hand for electricity generated from

renewable energy sources; electricity itself being an energy carrier.

Table 6
Mitigation and costs for 27% renewable electricity scenario with technology

learning.

Discount rate 3% 10% 15%

Annual CO2-eq saving (Mt/yr)

57

Incremental Annual Costannual cost (R millions) �11,087 �8208 �7557

Cost effectiveness (R/t CO2-eq) �193 �143 �132

Total CO2-eq saving (Mt,; 2003–2050) 2757

% increase on energy system costs �2.13

% of GDP �0.38

Table 7
Mitigation and costs for 50% renewable electricity scenario without technology

learning.

Discount rate 3% 10% 15%

Annual CO2-eq saving (Mt/yr)

68

Incremental Annual Costannual cost (R millions) 20,276 6310 2872

Cost effectiveness (R/t CO2-eq) 296 92 42

Total CO2-eq saving (Mt,; 2003–2050) 3285

% increase on energy system costs 2.64

% of GDP 0.56

Table 8
Mitigation and costs for 50% renewable electricity scenario with technology

learning.

Discount rate 3% 10% 15%

Annual CO2-eq saving (Mt/yr)

83

Incremental Annual Costannual cost (R millions) 527 278 79

Cost effectiveness (R/t CO2-eq) 6 3 1

Total CO2-eq saving (Mt,; 2003–2050) 3990

% increase on energy system costs 0.07

% of GDP 0.02
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Fig. 6. Emission reductions from 27% renewables compared to the base case, both

without technology learning.
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learning is assumed. The dip in emission reduction towards the
end of the period is due to the increased uptake of renewables
towards the end of the period in the base case. In a world where
technology learning reduces costs globally, South Africa benefits
from the lower unit costs, and in a least-cost modeling framework,
more of these technologies are taken up yielding greater emission
reductions (Figs. 8 and 9).

A dramatic shift in the mitigation costs can be seen–from
imposing a cost of R52/t CO2-eq (at 10% discount rate), including
assumptions about technology learning turns renewables into
negative cost option, saving R143 per ton reduced.

The conclusion is that, if South Africa found itself in a world in
which new technologies got cheaper due to investment globally,
emission reductions from renewable electricity would be more
cost-effective, and still deliver significant reductions. For a
scenario assuming 27% of electricity was generated from renew-
able energy sources, technology learning flips the costs from
positive to negative. Instead of imposing incremental costs (higher
than the base case), renewables can reduce costs.
4.2. Fifty percent of electricity generated by renewables

In this scenario, electricity dispatched from domestic renew-
able resources is extended to 50% by 2050. Total emission
reductions increase to 3285 Mt CO2-eq, but at a higher mitigation
costs of R92/t CO2-eq.

When taking learning into consideration, mitigation costs are
R3/t CO2-eq, with annual emissions reductions of 83 Mt CO2-eq. A
total of 3990 Mt is mitigated over the period.

For the mitigation costs of RETs, assumptions about learning
are clearly important.

Mitigation costs of R92/t CO2-eq decline to just R3 per ton
when we factor in technology learning. In the 50% renewable
electricity scenario, the change is not from incremental costs to
savings, but still from a much higher cost to one close to zero (i.e.,
comparable to the base case).
5. Future work

The approach to technology learning extends previous ap-
proaches to energy modeling (Alfstad, 2005; Howells and
Solomon, 2002), which have been used as inputs to integrated
energy planning (DME, 2003a). Nonetheless, there are limitations
to the approach taken here, which are areas for further work.

The limits on upper capacity and doubling times might be
derived from running a global energy model (see Section 2.6).
Currently, no such models are run in South Africa, making this an
area to be explored in future work. Depending on the model
structure, such further work could consider in greater detail
technology-specific factors, including market conditions, physical
and social constraints.

Another important extension of the work would be to apply
learning to a wider set of new technologies. The focus in the work
reported in this article has been mainly on renewable energy, and
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results were compared to a version of the base case that also
included learning. Learning rates for other electricity generating
technologies were considered—but found to be low. Further work
could examine learning rates for technologies in other demand
and supply sectors. Eventually, this would enable both the base
case or modelers reference case and all policy cases to reflect
technology learning.
6. Conclusion

It matters what world we inhabit. In this study of renewables
for mitigation in South Africa, it matters in particular whether our
scenarios play out in a future world that invests in renewables or
not. The benefit of a world in which global investment in
renewable energy reduces the unit costs would clearly be seen
in South Africa. What might seem like an expensive mitigation
option might in such a future become the preferred, low-cost
option.

The earlier sections of this article examined both the empirical
evidence of learning in RETs and theoretical aspects. Having
applied this to scenarios of renewable electricity as a mitigation
option in South Africa, it is clear that technology learning matters
greatly.

A dramatic shift in the mitigation costs was found in both
scenarios—for 27% and 50% of electricity from renewable energy
sources, respectively. For the less ambitious case, mitigation costs, in
Rand per ton of CO2-equivalent reduced—change from adding costs
(positive cost) to saving relative to the base case (negative cost). At
the higher penetration rate, there is not a change of sign in the costs,
but still a very significant reduction—from incremental costs of R92/
t CO2-eq to close to zero with technology learning.

Savings or reduced costs would promote the sustainability of
renewables as a solution. By including technology learning in
scenarios for renewable electricity in South Africa, the mitigation
costs are dramatically reduced, or even provide a saving relative to
business-as-usual. If such scenarios materialised, it would no
longer take legislation to mandate shares of renewables, but
greater uptake should be driven by economic incentives.

Overall, reductions in unit costs will be driven by global levels
of investment in renewables and overall installed capacity. South
Africa itself may well be part of the global investment in
renewable energy. Policy may promote climate-friendly technol-
ogies and make the country a place that manufactures and indeed
exports RETs.

The conclusion is that, if South Africa found itself in a world in
which new technologies got cheaper due to investment globally,
emission reductions from renewable electricity would be more
cost-effective, or even be more cost-effective than business-as-
usual.
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