## Exploring Spatial Gender Disparities in Smallholder Agricultural Productivity in Cameroon.



Authors Abdelkrim Araar | Ousmanou Njikam
| Ingride Phalone Douma Abossolo
Date November 2021
Working Paper 2021-24
PEP Working Paper Series
ISSN 2709-7331

## Exploring Spatial Gender Disparities in Smallholder Agricultural Productivity in Cameroon


#### Abstract

Abstrac $\dagger$ Gender differentials in agricultural productivity are likely to vary considerably between different agroecological zones. A thorough understanding of the location and causes of gender disparities are needed in order to formulate effective policies for addressing the gap. Exemplified on Cameroonian smallholder plot-level data, we examine the determinants of gender disparities in productivity separately for three agroecological regions e.g., Sahel, Western Highlands, and Bimodal Rainfall Humid Forest. We account for selectivity bias, employ an extended Oaxaca-Blinder decomposition, and a distributional decomposition using percentile weighted regressions. We found that gender disparities differ across agroecological zones and gender indicators: they are more acute in the arid Sahel for almost all plot headships, followed by the Western Highlands, while productivity is biased toward all women in the Bimodal Rainfall Humid Forest. We also found that gender disparities are the result of unobserved factors in all regions and plot headships. Women's structural disadvantage drives gender differences in returns to inputs with contributing factors differing by gender indicator and region. In all regions and plots, the endowment effect is larger for the poorest and wealthiest farmers and its drivers are neither gender-neutral nor the same in all agroecological areas. Gender and regional differences in the results suggest that policies should be genderand region-specific.


## Authors

Abdelkrim Araar<br>Researcher<br>Université Laval, PEP Network, CIRP<br>Canada<br>araar.abdelkrim@ecn.ulaval.ca<br>\section*{Ingride Phalone Douma Abossolo}<br>Ph.D. Student<br>University of Yaoundé II,<br>Cameroon<br>ingrideabossolo@gmaill.com.

Ousmanou NJIKAM
Associate Professor
University of Yaoundé II,

Cameroon
ousmanou.njikam@univ-yaounde2.org

Keywords: Smallholder agriculture; Productivity; Gender; Geography; Shapley decompositions; Cameroon

JEL Classification: D13, J16, O13, Q12, Q18

## Acknowledgements:

This research work was carried with financial and scientific support from The Partnership for Economic Policy (PEP) www.pep.net.org with funding from the Government of Canada through the International Development Research Centre (IDRC). The authors are grateful to Francesca Marchetta, two anonymous referees, and participants at the PEP 2019 Special General Meeting in Sally, Senegal, for valuable comments and suggestions on earlier drafts of this paper. Special thanks to our scientific and policy outreach mentors for their valuable and very constructive comments that substantially improved the quality of the paper.

## Table of Contents

I. Introduction ..... 1
II. Agroecological Characteristics and Gender Bias in Agricultural Productivity ..... 4
III. Daía and Study Area ..... 6
3.1. Data ..... 6
3.2. Study Area ..... 11
IV. Econometric Approach ..... 12
4.1. The Oaxaca-Blinder Decomposition Approach ..... 13
4.3. The Extended Oaxaca-Blinder Approach ..... 15
4.4. Gender Disparities-Decomposition and Heterogeneity ..... 16
V. Empirical Results and Discussion ..... 17
5.1. Probit Results ..... 17
5.2. Production Function Estimates ..... 17
5.3. Aggregate and Detailed Decomposition Results ..... 20
5.4. Indirect Contributors to Gender Disparities ..... 26
5.5. Distributional Decomposition Results ..... 28
VI. Conclusion and Policy Implications ..... 30
References ..... 32
Appendix ..... 35
List of Figures
Figure 1: Agricultural Productivity by Gender and Agroecological Zone .....  8
Figure 2: Kernel Density Estimates of Agricultural Productivity by Gender and Agroecological Zone .Figure 3: Extent of Productivity Gap by Gender Indicator and Agroecological Zone21
Figure 4ab: Decomposition of Gender Disparities by Agroecological Zone ..... 25
Figure 5: Gender Disparity Components by Percentile across Agroecological Zones ..... 28

## List of Tables

Table A1: Sample Selection by Agroecological Zone ..... 35
Table A2: Definition of Variables ..... 36
Table A3: Descriptive Statistics by Agroecological Zone ..... 38
Table A4: Probit (Marginal Effect) Estimates of Likelihood of Smallholder Farming by Gender and Agroecological Zone ..... 52
Table A5: Production Function Estimates by Gender and Agroecological Zone. Dependent Variable: Log (Total Crop Value Per Hectare) ..... 53
Table A6: Panels A-B. Decomposition of Gender Disparities in Productivity By Gender and Agroecological Zone ..... 58
Table A7: Estimates of Indirect Contributors to Gender Disparities across Agroecological Zones ..... 68
Table A8: Detailed Decomposition of Gender Disparities in Agricultural Productivity in Percentiles by Gender and Agroecological Zone ..... 71

## I. Introduction

While the role of African smallholder agriculture remains debated (see e.g., Collier \& Dercon, 2014), substantial evidence exists that its development is desirable. 1 The sector is dominated by women who are responsible for $80 \%$ of food production and $60 \%$ of cash-crop production. Agriculture remains, however, a sector with fundamental differences between men's and women's productivity as a result of women's unequal access to productive resources (Christiaensen et al., 2011). Gender disparities in agricultural productivity have been well documented (Kilic et al., 2015; Aguilar et al. 2015; Oseni et al. 2015; Slavchevska, 2015; Ali et al. 2016). However, in order to formulate policies effective in reducing gender-based disparities in agricultural productivity, a thorough understanding of locations and underlying causes is needed.

In fact, in Africa, the smallholder farming environment is essentially heterogeneous (for example, diversity in environmental, demographic, and socioeconomic factors) (Vanlauwe et al. (2014). Such factors might aggravate the consequences of the lower productivity of women-headed plots largely as a result of limited access to key productive assets (land, labor, technology, credit, and extension services, e.g.; Doss, 2018). In Cameroon, for example, smallholder farmers operate in agroecological regions ${ }^{2}$ that differ in climate variability, soil quality, water availability, access to land and land use, socioeconomic factors, cultural norms, etc. These features potentially generate gaps in crop yields by agroecological region. In addition, gendered agricultural productivity gaps might be found in those specific agroecological characteristics. That is, agroecological conditions might be related to gendered access to inputs (land and labor), stratification of production systems, patterns of cultivation and marketing, and so on (Djurfeldt et al., 2013; Slavchevska,

[^0]2015). Our analysis, therefore, is based on the theoretically informed expectation that the agroecological and socioeconomic characteristics of the places where individuals or households are located serve as important determinants of welfare levels (Benson, Chamberlin \& Rhinehart, 2005).

As Fuwa (2000) pointed out, a large heterogeneity exists among plots headed by women (e.g., different reasons for becoming a plot head, heterogeneous interests, problems and types of inequality). Hence, in investigating whether plots headed by women are particularly disadvantaged, it is of paramount importance to include a sensitivity analysis related to alternative definitions of plot headship among various agroecological conditions. However, to date, as far as we are aware, this has not been explored.

The aim of our study is to examine the agroecological locations and underlying factors of gender disparities in agricultural productivity. Our measure of productivity was constructed by taking the market value per land of the output of three agricultural products-rice, maize, and groundnuts. We then addressed three questions: (i) where are gendered agricultural productivity gaps located? (ii) do the extent and correlates of gender disparities differ across agroecological zones? and (iii) do the magnitude and causes of gender disparities differ according to the definition of plot headship? Methodologically, we split the sample on the basis of each agroecological type as well as by gender of plot heads. We used five different gender indicators of plot head: (i) plots headed by women; (ii) de jure plots headed by women (i.e., women are the sole heads of their plots because of being single, separated, divorced, or widowed); (iii) plots headed by migrant women; (iv) plots managed by women; and (v) plots owned by women.

We addressed potential sample-selection bias first by employing the Heckman two-step method. Second, we estimated a Cobb-Douglas production function to control for district-fixed effects and employed an extended Oaxaca-Blinder method to decompose gender disparities into (i) endowment effects (the portion of gender disparities caused by observable differences in inputs) and (ii) structural effects (the unexplained portion of gender disparities caused by differences in returns to the
same observed inputs). Finally, we applied a distributional decomposition using percentile-weighted regressions to explore gender disparities at different levels of farmers' well-being. Analyses were conducted separately for each agroecological zone and each plot headship.

We found that gender disparities differed across agroecological zones and gender indicators: it is more acute in the arid Sahel agroecological area for all plot headships, except in the case of the plot-manager sample in which productivity was biased toward women; in the Bimodal Rainfall Humid Forest zone, gender disparities were absent across all gender indicators; and, in the Western Highlands region, the gender disparities were absent in the plot-manager sample while there was discrimination against women farmers in the remaining categories. We also found, in all agroecological regions and for all plot headships, that unobserved factors were the main contributors to gender disparities in productivity. Furthermore, women's structural disadvantage drove gender differences in returns to resource endowments; the contributing covariates differ by gender and geography. Finally, in all plots and agroecological regions, and across the agricultural productivity distribution, the endowment effect was more pronounced for the poorest and wealthiest farmers, and drivers differed between both groups of farmers.

Past studies on the gender-based differences in agricultural productivity are likely clouded by the failure to distinguish among very different types of plot headship for women in potentially different agroecological contexts. To the best of our knowledge, exceptions are the works by Oseni et al. (2015) in Nigeria and Slavchevska (2015) in the case of Tanzania. In contrast to these studies, we (i) control for sample selection, (ii) apply an extended Oaxaca-Blinder (Shapley) decomposition and a distributional decomposition using percentile-weighted regressions, obtaining both direct and indirect key drivers of gender disparities in productivity, and (iii) use five indicators of plot headship, obtaining robust results. A thorough understanding of the location and causes of gender disparities in agricultural productivity could allow the formulation of effective policies to reduce such disparities e.g., the formulation and implementation of "agroecology region-specific" agricultural policies, which are more relevant and effective than "national" policies. Our study
adds to the scientific literature in one way.
The rest of the paper is structured as follows. Section 2 elaborates on the implications for the gender disparities in productivity of various types of agroecological zones. Section 3 presents the data and describes the study area. Section 4 contains the empirical econometric model. The results are presented and discussed in Section 5. Section 6 then concludes and provides the policy implications of the findings.

## II. Agroecological Characteristics and Gender Bias in Agricultural Productivity

Gendered productivity differentials are generally related to gendered access to productive assets, technology, institutions, and market opportunities (Anunobi, 2002). Agroecological production contexts are significant, however, in locating and further understanding gender-based differences in productivity. For example, dry and arid agroecological regions characterized by climate variability (e.g., high temperature and very low rainfall), and which therefore suffer from drought and water stress, might not be able to support sufficient agricultural production. As a result, gender disparities in such an agroecological context might arise from farmers' struggle to survive in a risky environment-the dry and arid environment, for example, could further burden women with such additional tasks as fetching water and firewood, reducing the time women spend on farming activities and resulting in lower agricultural productivity. Also, higher temperatures associated with climate variability are harmful to the production of many crops; in this context, women cultivators, who are more likely to cultivate low-value crops, might be further disadvantaged. Additional constraints on agricultural productivity, which are also causes of gender bias in agricultural productivity, include soil quality, land tenure inequality, access to markets, etc., all of which are agroecology dependent.

Access to and control of water also differ agroecologically and are important determinants of agricultural productivity as well as of gender based productivity differences. For example, in the context of low potential rainfed, the control of water, such as irrigation, becomes more difficult and more costly. In this context, women who often face serious constraints in access to productive resources, may experience lower productivity.

Likewise, religious and cultural norms vary by agroecological zone with potential implications for women's productivity. For example, women in Muslimdominated agroecological zones where polygamy is common may be at a further disadvantage in productivity because some Islamic cultural norms are intertwined with access to land, legal provisions surrounding women's property rights, etc. Tenure restrictions or cultural taboos that vary across agroecological regions may prevent women from growing some crops or they may be marginalized to less productive lands (Croppenstedt et al., 2013).

Overall, we posit the following hypothesis:

## H1: Gender differentials in productivity vary by agroecological zone.

A number of studies have explored disparities between men and women in agricultural across Africa using plot-level data and have obtained mixed results (see, among others, Udry et al., 1995; Udry, 1996; Akresh, 2005; Goldstein \& Udry, 2008; Kazianga \& Wahhaj, 2013; Oseni et al., 2015; Aguilar et al., 2015; Palacios-Lopez \& Lopez, 2015; Kilic et al., 2015; Ali et al., 2016; De La O Campos et al., 2016). Our study is in line with these studies, but we contribute to the literature in one main area. With the exception of Oseni et al. (2015) and Slavchevska (2015), none of the previous studies have investigated spatial heterogeneity in productivity differentials by gender. The variety of climatic and agroecological conditions, as well as potential differences in gender norms across agroecological areas, however, may lead to pronounced regional differences in agricultural productivity between men and women. Thus, as a main contribution, we have explored how gender disparities in agricultural productivity vary spatially-i.e., across agroecological zones with heterogeneous agroclimatic and socioeconomic conditions. Further, and in contrast
to previous studies, we used an extended Oaxaca-Blinder (Shapley) decomposition that allowed us to delve deeper into how different covariates directly and indirectly contribute to gender disparities in agricultural productivity. Additionally, we examined gender disparities at specific percentiles using a distributional decomposition based on percentile-weighted regressions, which provides consistent estimated percentile coefficients compared to quantile and unconditional quantile models (Firpo et al., 2009; Araar, 2016).

## III. Data and Study Area

### 3.1. Data

We relied on survey plot-level data from the Institute of Agricultural Research for Development (IRAD). ${ }^{3}$ The survey was conducted in April-December 2009 and covered the Sahel agroecological zone in the north and far-north, the Western Highlands zone in the west and north-west, and the Bimodal Rainfall Humid Forest in the center. The IRAD dataset is a nationally representative survey because it covers five of the ten regions and three of the five main agroecological zones of Cameroon. The survey included three modules (household, producer, and complementary). We used gender of plot head as a proxy for studying differences in agricultural productivity. One of the advantages of the IRAD survey is that it allows the identification of five gender indicators: (i) plot head; (ii) de jure plot head (i.e., farmers who are the sole heads of their plots because of being single, separated, divorced or widowed); (iii) migrant plot head (the survey asked, "Is the farmer a native of the village?"); (iv) plot manager (the person responsible for growing the crops and making day-to-day decision on crop management (the survey asked, "Person in

[^1]charge of the plot?"); and (v) plot owner (the survey question was "Land tenure?"). Recorded responses were: (1) owner, (2) tenant, (3) temporary transfer, (4) donation, and (5) other. The various plot headships were combined with information in the household module, enabling us to determine the gender and socioeconomic characteristics of each plot headship.

The sample initially included 1,488 households whose members cultivated 4,026 plots across 166 villages. In drawing the final sample (i) we focused on active producers and limited the sample to plots with non-zero crop harvest was reported ${ }^{4}$ and (ii) we focused on agricultural households for which complete information regarding gender indicators was available. The final sample consisted of 1,200 agricultural households and 3,075 plots across 125 villages and three agroecological zones. To avoid inconsistent estimates, the missing independent observations were imputed using the Predictive Mean Matching approach. The details of the selection, a full list of the variables along their meaning, and the descriptive statistics with the $t-$ test of the differences in means are reported in Appendix Tables A1, A2, and A3, respectively.

Summary statistics and results from t-test mean differences by gender and region show variations and significant differences in the value of harvest and harvest per hectare (Figure 1) and in most household's and plot's characteristics, labor and nonlabor inputs. Figure 2 compares kernel density estimates by gender indicator and agroecological zone. Although there is overlap in many of the kernels, gender differences in agricultural productivity are evident in some cases.

[^2]Figure 1: Agricultural Productivity by Gender and Agroecological Zone


Source: Authors' calculations based on IRAD.

Figure 2: Kernel Density Estimates of Agricultural Productivity by Gender and Agroecological Zone

(a) Sahel: Agricultural productivity by gender plot head Kolmorogov-Smirnov test results (p-value): Male vs. Female: 0.015
—— Male $\qquad$ Female

(a) Sahel: Agricultural productivity by gender migrant plot head Kolmorogov-Smirnov test results (p-value): Male vs. Female: 0.301 _Male -_ Female

(a) Sahel: Agricultural productivity by gender plot owner Kolmorogov-Smirnov test results (p-value): Male vs. Female: 0.000 - Male - Fema

(a) Sahel: Agricultural productivity by gender plot de jure head Kolmorogov-Smirnov test results (p-value): Male vs. Female: 0.805 ——Male $\qquad$

(a) Sahel: Agricultural productivity by gender plot manager Kolmorogov-Smirnov test results (p-value): Male vs. Female: 0.006 _Male -_ Female

(b) Western Highlands: Agricultural productivity by gender plot head Kolmorogov-Smirnov test results (p-value): male vs. Female: 0.915 - Male Female


(b) Western Highlands: Agricultural productivity by gender de jure plot head(b) Western Highlands: Agricultural productivity by gender migrant plot head Kolmorogov-Smirnov test results ( $p$-value): Male vs. Female: 0.720 Komorogov-Smirnov test results (p-value): male vs. Female: 0.153 —— Male $\qquad$ __ Male __ Female

(b) Western Highlands: Agricultural productivity by gender plot manager Kolmorogov-Smirnov test results (p-value): Male vs. Female: 0.197 __ Male ___ Female

(b) Western Highlands: Agricultural productivity by gender owner Kolmorogov-Smirnov test results ( $p$-value): Male vs. Female: 0.587 $\ldots$ Male $\quad$ Female


(c) Bimad Rainfall Humid Forest: Agricultural productivity by gender plot head(c) Bimodal Rainfall Humid Forest: Agricultural productivity by gender de jure plot head Kolmorogov-Smirnov test results (p-value): male vs. Female: 0.657 Kolmorogov-Smirnov test results (p-value): Male vs. Female: 0.575 —— Male —— Female ——Male ——_ Female


(c) Bimodal Rainfall Humid Forest: Agricultural productivity by gender migrant plot head(c) Bimodal Rainfall Humid Forest: Agricultural productivity by gender plot manager Kolmorogov-Smirnov test results (p-value): Male vs. Female: 0.289 Kolmorogov-Smirnov test ( $p$-value): Male vs. Female; 0.995 Male $\quad$ Female _Male Female

(c) Bimodal Rainfall Humid Forest: Agricultural productivity by gender plot owner

Kolmorogov-Smirnov test results (p-value): male vs. Female: 0.965
—— Male —— Female
Source: Authors' calculations based on IRAD.

### 3.2. Study Area

Sahel. This zone is characterized by a large diversity in climate, rainfall, socioeconomic characteristics, etc., and thus may have extremely variable crop outcomes. The climate is humid, with a dry, semi-arid winter, a long dry season (nine to ten months), and a rainy season of four months (June-September). Annual rainfall is less than 800 mm with a large inter-year variation. The major rainfed crops are sorghum, millet, maize, groundnuts, cowpea, and rice, while cotton is the predominant cash crop. Labor is the key factor of production and Muslim and nonMuslim ethnicities coexist. Land is inherited patrilineally. In practice however, all land belongs to the chief who transfers its control to his deputies who, in turn, oversee the allocation of usufructuary rights to farming households (Yengoh et al., 2011).

Western Highlands. Here, cropping is much less risky. The climate is of a tropical humid mountain type and has two seasons: a rainy season of nearly eight months (March-October) and a four-month dry season (November-February). The annual rainfall is approximately $1,300-3,000 \mathrm{~mm}$. A large proportion of the population (over $80 \%$ ) is involved in small-scale farming ( $0.5-2$ hectares per family). The main food crops are maize, groundnut, bean, and rice, all of which are rainfed; the main cash crops are tomato, leafy vegetables, and coffee. Access to land is marked by traditional land-tenure laws, which are characterized by unequal rights of access based on gender.

Bimodal Rainfall Humid Forest. The region is relatively well-endowed with
land, enabling farmers to sustain agriculture and shift cultivation; the use of slash-and-burn methods dominates. The zone has a four-season climate. There is a maximum of two dry months; the rainy season prevails during the rest of the year. Annual rainfall ranges from 1,500-3,000 mm.

Overall, the three agroecological zones differ radically in terms of climate, rainfall variability, soil richness, socioeconomic attributes, and other factors, because of which gender productivity differentials are also likely to vary.

## IV. Econometric Approach

Our full-time farmers may differ in both observed and unobserved characteristics from individuals whose main activity is not farming (non-full-time farming). Therefore, estimating the crop production function with OLS directly may have caused a selection bias. To overcome this bias, we followed the approach of Ahmed and McGillivray (2015) and corrected this selection bias with the Heckman's (1979) two-step approach. In the first step, we estimated the inverse Mill's ratio (denoted by 7 ) from a probit equation determining participation in the smallholder farming. To do so, we estimate the following equation separately for men and women,
$F_{i j}=Z_{i j} \gamma_{j}+\varepsilon_{i j}$
where $i$ denotes the plot and $j$ gender group (women or men). $F_{i j}$ is a dummy variable equal to 1 if full-time farming (i.e., smallholder farming is the main activity) and 0 otherwise. $Z_{i j}$ represents the set of covariates and the instrumental variables ${ }^{5}$ (1) the number of children under 6 and number of adults aged 15 and higher in the household, (2) a dummy variable for being head of the household, (3) household nonfarm income, and (4) household wealth. $\varepsilon_{i j} \sim$ IID $N(0,1)$. Estimation of Equation 1

[^3]allows to compute the inverse Mill's ratio $\left(\lambda_{i}=\frac{\phi\left(y z_{i}\right)}{1-\Phi\left(y z_{i}\right)}\right)$, which is then added as an additional regressor in the agricultural productivity equation. $\phi$ and $\Phi$ represent respectively the density and the cumulative density functions.

### 4.1. The Oaxaca-Blinder Decomposition Approach

We next focused on the decomposition of the gender disparities in productivity (D) using the classic Oaxaca-Blinder (OB) decomposition at the mean (Oaxaca, 1973; Blinder, 1973). Assume agricultural productivity (Y) for a gender $G \in\{M, F\}$ where M and F indicate men and women, respectively,

$$
\begin{equation*}
Y_{G}=\sum_{k=1}^{K} \beta_{G, k} X_{G, k}+\varepsilon_{G} \tag{2}
\end{equation*}
$$

where $X$ is a vector of $K$ observable individual-, household-, and plot-level explanatory variables; $\beta$ is the vector of intercept and slope coefficients; and $\varepsilon$ is the error term under the assumption that $E\left(\varepsilon_{M}\right)=E\left(\varepsilon_{F}\right)=0$. To decompose gender disparities (D), we have that:
$D=E\left[Y_{M}\right]-E\left[Y_{F}\right]$
Equations 2 and 3 imply that
$D=E\left[\sum_{k=1}^{K} \beta_{M, k} X_{M, k}\right]-E\left[\sum_{k=1}^{K} \beta_{F, k} X_{F, k}\right]$
$=\sum_{k=1}^{K} \beta_{M, k} \bar{X}_{M, k}-\sum_{k=1}^{K} \beta_{F, k} \bar{X}_{F, k}$
By selecting women as a reference group and rearranging Equation 4, we can write:
$D=\sum_{k=1}^{K}\left(\bar{X}_{M, k}-\bar{X}_{F, k}\right) \beta_{F, k}+\sum_{k=1}^{K}\left(\beta_{M, k}-\beta_{F, k}\right) \bar{X}_{F, k}$
$+\sum_{k=1}^{K}\left(\bar{X}_{M, k}-\bar{X}_{F, k}\right)\left(\beta_{M, k}-\beta_{F, k}\right)$
On the other side, if men become the reference group, we can write:

$$
\begin{align*}
& D=\sum_{k=1}^{K}\left(\bar{X}_{M, k}-\bar{X}_{F, k}\right) \beta_{M, k}+\sum_{k=1}^{K}\left(\beta_{M, k}-\beta_{F, k}\right) \bar{X}_{M, k} \\
& +\sum_{k=1}^{K}\left(\bar{X}_{M, k}-\bar{X}_{F, k}\right)\left(\beta_{M, k}-\beta_{F, k}\right) \tag{6}
\end{align*}
$$

However, the $O B$ method raises the well-known index number problem.

Indeed, the endowment component (i.e., the first arguments in Equations 5 and 6) is sensitive to the selection of the reference group.

### 4.2. The Neumark (1988) Approach

Different approaches have been proposed to overcome the index number problem. All of them, however, are based on the use of a nondiscriminatory coefficient vector denoted by $\beta^{*}$. Chronologically, Reimers (1983) proposed using average coefficients over groups of women and men, an approach that was followed by Cotton (1988), who suggested weighing coefficients by group sizes. Neumark (1988) suggested instead the use of the coefficients from a pooled regression. Oaxaca and Ransom (1994) developed a general framework to weight coefficients. Also, this approach led to Neumark (1988) decomposition. Neumark (1988) and Oaxaca and Ransom (1994) have been criticized, however, because cases may exist in which the unexplained parts of the differential are in the explained component (see Fortin, 2006). To overcome this drawback, the addition of a gender dummy in the pooled regression has been suggested (see Jann, 2008).

We have exactly followed the method of Kilic, Palacios-Lopez, and Goldstein (2015), whose roots lie in the work of Neumark (1988). For our pooled data sample, we have

$$
\begin{equation*}
Y=\sum_{k=1}^{K} \beta_{k}^{*} X_{k}+\varepsilon \tag{7}
\end{equation*}
$$

where $\bar{X}_{G, k}$ refers to the average of the explanatory variable within gender $G$. Rearranging Equation (5) by adding and subtracting the return to the observable covariates of each group valued at $\beta^{*}$ :

As we can observe, the expected average covariates of the model $\left(\bar{X}_{G, k}\right)$ contribute in each of the two main gender-disparity components.

### 4.3. The Extended Oaxaca-Blinder Approach

For deeper analysis, we developed an innovative method that can be used to study the determinants of a given endowment of interest and its contribution to gender disparities. For example, if we observe that education contributes significantly in the endowment effect component, we may be interested to study the estimation model and to show how its explanatory variables contribute indirectly to gender disparities. We denote the explanatory variables of the covariate of interest $\left(X_{G, J}\right)$. Thus, we have that:
$X_{G, I}=\sum_{l=1}^{L} \beta_{G, l} Z_{G, l}+\vartheta_{G}$
Let $A D_{I}$ denotes the absolute contribution of variable of interest if $X_{I}$ to the gender disparities:

Because $\bar{X}_{G, I}=\sum_{l=1}^{L} C_{G, l}$ and $C_{G, l}=\beta_{G, l} \bar{z}_{G, l}$, we can write:
$A D_{I}=\sum_{\substack{l=1 \\ \text { SUB-Comiponent 1: } \\ \text { Endowment Effect }}}^{L}\left(C_{M, l}-C_{F, l}\right) \beta_{I}^{*}+\underbrace{\left(\begin{array}{c}\text { SUB-Component } 2 \mathrm{i} \\ \text { Structural Effect }\end{array}\right.}_{\begin{array}{c}\text { Men Struytural } \\ \text { Advantage }\end{array}}$

This nested decomposition enables an examination of how indirect factors (e.g., ethnicity) contribute to the main gender disparities components. Let $A D_{k}=E E_{k}+$ $S E_{k}$ and where $E E_{k} S E_{k}$ refer to the endowment effect and structural effect respectively. We have that:

$$
\begin{equation*}
D=\sum_{k=1}^{K} A D_{k}=\sum_{k=1}^{K} E E_{k}+\sum_{k=1}^{K} S E_{k} \tag{12}
\end{equation*}
$$

If we distinguish our explanatory variable of interest (education for instance), we can write:

$$
\begin{equation*}
D=\sum_{k=1, k \neq I}^{K} E E_{k}+\sum_{k=1, k \neq I}^{K} S E_{k}+\sum_{l=1}^{L} E E_{l, l}+\sum_{I=1}^{L} S E_{l, l} \tag{13}
\end{equation*}
$$

### 4.4. Gender Disparities-Decomposition and Heterogeneity

The decompositions presented above give a general view of the extent of the different decomposition components based on reference men and women, supposed to form average endowments. But does the relative contribution of components vary largely from poor to rich? To examine the potential presence of heterogeneity, percentile gender disparities were decomposed. Instead of the usual quantile regression, we used the percentile-weighted regressions, which provided consistent estimated percentile coefficients compared to the quantile and unconditional quantile models of Araar (2016) and Firpo et al., (2009). Looking across the productivity distribution helps to determine whether the extent of gender disparities is more of an issue at the bottom or the top of a distribution, a distinction that has different policy implications. ${ }^{6}$

[^4]
## V. Empirical Results and Discussion

### 5.1. Probit Results

Appendix Table A4 presents the results of probit estimation on the determinants of participation in smallholder farming for men and women, respectively, across agroecological zones. In the Sahel, the presence of children aged $\leq 5$ in the household has a positive and significant coefficient in both men's and women's specifications. The estimated coefficients indicate that the number of children aged $\leq 5$ in the household is associated with a 4.2 and 7.7 percentage-point increase in the farming probability of Sahelian men and women, respectively. The coefficient associated with the number of adults aged $\geq 15$ in the household is negative and statistically significant in the specification for women. This indicates that the presence of adults in the household is associated with a decline of 1.5 percentage points in the likelihood that Sahelian women will be farmers. The wealth of the household strongly decreases the likelihood that men in the Sahel will farm. Finally, being head of the household is associated with a 9.9 percentage-point increase in the probability of farming for Sahelian women.

In the Western Highlands zone and for men, age is positively associated with the farming probability (with a decreasing effect). The number of adults aged $\geq 15$ in the household and non-farm income significantly increase men's probability of farming. The number of adults aged $\geq 15$ in the household is also associated with a 1.8 percentage point increase in women's probability of farming, while being head of the household is associated with a 9.3 percentage-point lower probability of farming for women. Turning finally to the Bimodal Rainfall Humid Forest zone, we observed that an increase in the number of years of education significantly increased men's likelihood of farming by 3.9 percentage points.

### 5.2. Production Function Estimates

Pooled and separate gender-based regression results of factors that drive or depress agricultural productivity across agroecological zones are displayed in

Appendix Table A5.
Sahel. Age is positively and significantly linked to productivity on migrant plots headed by men, with a decreasing effect. This indicates that, because of their experience, older migrant men in the Sahel region are more productive but less likely to adapt as they age. The same goes for the pooled sample in all plots. Years of education have a significant and negative effect on productivity on de jure plots headed by men. The child-dependency ratio significantly depresses productivity on plots headed by women, de jure plots headed by men, and migrant plots headed by men. In all plots, we identified an inverse relationship between agricultural productivity and plot area, suggesting that any increase in cultivated land area, all other things being equal, will reduce productivity. This echoes the findings by Oseni et al. (2015) in the northern region of Nigeria. The presence of child laborers in the family had a negative and significant relationship to productivity on plots headed by women, de jure plots headed by women, plots owned by women, and plots managed by men. In all plots and for the pooled sample, the presence of laboring children in the family also had a negative relationship to productivity. In all plots, the quantity of seed used per hectare had a positive and significant effect on productivity. Finally, growing a single crop on a plot (maincropping) was positively and significantly related to productivity on plots headed by men and those managed by women. The estimated coefficients show that maincropping drives productivity by $20.3 \%$ on plots headed by men and $20.6 \%$ on those managed by women. This indicates that, in the Sahel region, men and women managers are more adept and experienced in single-crop farming.

Western Highlands. The key factors of production in this agroecological zone are also presented in Appendix Table A5. In most cases, these factors are different than in the Sahel zone. Age appears to have a positive and significant effect on productivity on pooled migrant sample and migrant plots headed by men, but the effect drops with age. As with the Sahelian sample, land size has a negative and significant effect on productivity, while the log of quantity of seed used per hectare is associated with significantly higher productivity in all plots. In contrast to the results
for the Sahel agroecological region, we found that the household size has positive relationship with productivity on almost all plots, except on de jure plots headed by women and in the migrant sample. The child-dependency ratio and livestock negatively and significantly affect productivity on the pooled sample, on migrant plots headed by men, and on plots owned by women plots. In terms of labor inputs, the coefficient on women family laborers is negative and statistically significant for de jure plots headed by women and on plots owned by men; child family labor significantly depressed productivity on plots headed by men, in the pooled sample, in migrant plots headed by women, and plots owned by men. Hired laboring men, in contrast, had a positive association to productivity on plots owned by women, and hired women laborers boosted productivity on plots headed by men and on those owned by men. In terms of nonlabor inputs, the log of quantity of fertilizer used per hectare is negative and has a significant relationship to productivity on the migrant plots headed by women sample.

Bimodal Rainfall Humid Forest. The results are also displayed in Appendix Table A5. Agricultural productivity is negatively associated with schooling on plots headed by men, on de jure plots headed by men, on migrant plots headed by men, and on plots owned by men. In all pooled samples and in the sample of plots managed by men, the coefficient of household size was negative and statistically significant. The child-dependency ratio had a negative and statistically significant effect on the productivity of plots managed by women. Livestock was positively and significantly related to productivity on migrant plots headed by men and on plots owned by men. In contrast to the Sahel and Western Highlands samples, distance from plot to homestead had a positive and strongly significant effect on the productivity of all women's plots. Among labor inputs, family labor by men and children was negatively related to agricultural productivity on all plots while the reverse was true for family labor by women in all pooled samples. In all pooled samples as well as in all women-headed plots, the log of herbicide per hectare was significantly and positively associated with productivity.

Overall, the results of the individual agroecological zones point to fundamental differences and some similarities in the factors influencing agricultural productivity in
those regions.

### 5.3. Aggregate and Detailed Decomposition Results

The aggregate and detailed decomposition results are presented in Appendix Table A6 Panels A-B. Panel A indicates the gaps and the associated components, while Panel B presents the detailed decompositions and the associated gap components. The results in Panel A indicate that gender disparities vary based upon agroecological zone and across gender indicators (Figure 3). Of note is the finding that a positive productivity gap indicated that men-headed plots were more productive than women headed ones, while a negative productivity gap suggested higher productivity for women-headed plots.

In the Sahel and Western Highlands regions, the coefficients on the gender disparities are positive and highly significant on all plot headships, except on plot managers. This indicates that in both regions, women are associated with significantly lower productivity, whereas there are no gender-based differences in productivity on plot managers. In addition and for all gender indicators, the men-women differences in productivity are more pronounced in the Sahel region. Specifically, in the Sahel, the gender disparities ranges from $3.1 \%$ on de jure plot headship to $16.6 \%$ on plot headship while in the Western Highlands it ranges from $1.2 \%$ on plot owners to $7.2 \%$ on plot migrant headship. Substantially different results are obtained for the Bimodal Rainfall Humid Forest, where we found negative and significant gender disparities for all plot headships. Hence, the pattern points to a lack of discrimination against women farmers in this agroecological region (i.e., farming men are associated with significantly lower productivity).

In sum, the evidence is consistent with the argument of agroecological variation in gender based disparities in agricultural productivity. From a policy perspective, it is important to understand the factors associated with those gender disparities. This is achieved in the next sections.

Figure 3: Extent of Productivity Gap by Gender Indicator and Agroecological Zone


Source: Authors' calculations based on IRAD.

### 5.3.1. Aggregate Decomposition Results

Sahel. In plot head and owner, the endowment effect is negative and statistically significant; the associated gender disparities in productivity of $16.6 \%$ and 15.6\%, respectively are -2.8 percentage points for the former and -2.4 percentage points for the latter as a result of difference in endowments. In plot managers, the endowment effect is rather positive and significantly different from zero; of the observed gender disparities of about 12\% in favor of plots managed by men, 5.2 percentage points are explained by gender differences in the levels of productive resources. In plot de jure and migrant heads, the explained portion of the gap is not significant.

In all plots, the structural effect is statistically significant; it accounts for 19.3 percentage points (plot head), 3.3 percentage points (plot de jure head), 7.5 percentage points (plot migrant head), -17.2 percentage points (plot manager) and 18 percentage points (plot owner) of the gender disparities in productivity. Further, the structural portion of the gap is disaggregated into the men's structural advantage and women's structural disadvantage. In all plots, the men's structural advantage is significant; it is highest on plot owner ( 6.6 percentage points) and lowest on plot manager (-9.6 percentage points). The coefficient on women's structural
disadvantage is strongly statistically significant in all plots; it is highest on plot head (12.8 percentage points) and lowest on plot manager (-7.5 percentage points).

Western Highlands. In all plots, the portion of the gender differential in productivity caused by characteristics of plots is statistically significant; it is -1.8 (plot de jure head), -3 (plot head), -3.7 (plot owner), 0.5 (plot migrant head), and 3.7 (plot manager) percentage points. Also, and in all plots, the structural effect is statistically significant; it is - 8.8 percentage points on plot manager and ranges between 4.4-7.2 percentage points on the remaining plots. The coefficients on both men's structural advantage and women's structural disadvantage are significantly different from zero on all plots; the men's structural advantage is -4.6 percentage points on plot manager and varies between 2.1-3.4 percentage points on the remaining plots; the coefficient on women's structural disadvantage is -4.2 percentage points on plot manager and is in the range of 2.4 to 3.8 percentage points on the rest of the plots.

Bimodal Rainfall Humid Forest. In the decomposition results, we found that the explained portion is statistically significant only on plot head and is -2.5 percentage points as a result of differences in endowments. The unexplained portion is statistically significant in all plots; it explained 3.5 (plot de jure head), -3.7 (plot owner), -4.8 (plot head and manager) and -10.3 (plot migrant head) percentage points of the gender disparities in productivity. The men's structural advantage is significant in three plots e.g., plot head ( -1.6 percentage points), plot migrant (-7.1 percentage points) and plot de jure head ( 6.7 percentage points). In all plots, the coefficient on the women's structural disadvantage component is negative and highly statistically significant.

Figure 4a further illustrates the aggregate decomposition of gender difference in productivity.

Overall, in all agroecological zones, the gender disparities in productivity is as a result of farmers' unobserved characteristics, mirroring the findings by Mbratana and Fotié Kenne (2018) on gender wage gap in self-employment in Cameroon. The importance of the structural effect over the endowment effect might be related to various unobservable discriminations against Cameroonian women. For example,
relative to men, women farmers are significantly younger and hence face a substantial disadvantage in terms of farming experience. Because of reproductive activities, women also have lower returns from having a greater dependency burden with many children. Women are also disadvantaged on the household size dimension e.g., a higher number of adult household members. Cultural differences and norms across agroecological regions, regional socioeconomic differences e.g., access to roads and markets, bureaucratic and gendered land tenure legislation (Vitalis Pemunta, 2017) etc. also explain gender differences in returns to resource endowments.

### 5.3.2. Detailed Decomposition Results

In order to accurately identify the factors that contribute the most to the different components of the gender disparities, it is worth noting that for the endowment effect, a positive (negative) coefficient widens (reduces) the gender disparities. Concerning the structural component, a positive coefficient for men's structural advantage implies that men obtain a higher return than average, whereas a positive coefficient for women's structural disadvantage indicates that women obtain a lower return than average.

Sahel. On factor contributes the most to the different components of the gap on plot head e.g., the quantity of seed used per hectare; it does so by contributing positively to the endowment effect (5.4\%), men's structural advantage (14.5\%) and to women's structural disadvantage (172.6\%). Hence, plots headed by women in the Sahel zone faced substantial discrimination in returns to seed use. Family labor by men and boys mainly magnified gender disparities on plot de jure head by enlarging the endowment effect (1.3\%), men's structural advantage (124.5\%) and women's structural disadvantage (398.7\%). The age variable widened gender disparities on plot migrant head the most by contributing positively to the endowment effect (60.8\%), men's structural advantage (201.1\%) and to women's structural disadvantage (394.8\%). Similar effects were found for plot owner, but the differences were not as large e.g., contribution to the endowment effect (53.2\%), men's structural advantage (10.3\%) and to women's structural disadvantage (93.6\%). In contrast, and for plot manager, the main factor reducing the gender disparities is land size; it does so by
decreasing the endowment effect (-1.4\%), men's structural advantage (-131\%) and women's structural disadvantage (-77.3\%).

Western Highlands. In three plots e.g., plot head, plot de jure head, and plot owner, the single most important driver of gender differences in productivity is fertilizer, which contributes to the size of (i) endowment effect for $1.4 \%$ (plot head), $3.1 \%$ (plot de jure head) and 5.2\% (plot owner), (ii) men's structural advantage for 588.1\% (plot head), 272.9\% (plot de jure head) and $780 \%$ (plot owner), and (iii) women's structural disadvantage for $602.4 \%$ (plot head), $450.2 \%$ (plot de jure head) and $1,247 \%$ (plot owner). In the plot migrant head, age is the main factor enlarging the factor effect (58.8\%), men's structural advantage (170.1\%) and the women's structural disadvantage (415.2\%) and thus widens the gender disparities. In the plot manager, agricultural equipment is the factor that contributes the most negatively to the factor effect ( $-1 \%$ ), men's structural advantage ( $-89.2 \%$ ) and women's structural disadvantage ( $-95.7 \%$ ) and thus reduces the gender disparities.

Bimodal Rainfall Humid Forest. In all plots, except the plot migrant head, fertilizer significantly depresses the gender disparities by reducing the endowment effect, men's structural advantage and women's structural disadvantage. Finally, in the plot manager, livestock reduces the gap by contributing negatively to the factor effect, men's structural advantage, and women's structural disadvantage.

Figure 4B further illustrates the detailed decomposition of gender disparities. Overall, the women's structural disadvantage drives the gender disparities in all agroecological zones and for all gender indicators as a result of various factors.

Figure 4ab: Decomposition of Gender Disparities by Agroecological Zone


(b) Bimodal humid rain forest: Detailed decomposition of gender gap


Source: Authors' construction based on IRAD.

### 5.4. Indirect Contributors to Gender Disparities

Appendix Table A7 reports on factors that may be correlated with the drivers of gender disparities across agroecological regions.

Sahel. Household equipment positively affected labor by men in the family of plot de jure heads. In the plot migrant head and plot manager, education was negatively related to age while maincropping carried a positive and significant association with age. Although marginally significant, access to credit was negatively related to the age of migrant farming men. Ethnicity ${ }^{7}$ was positively and significantly linked to land size among plot managers. Finally, we found the relationship between land size and age of plot owner to be negative and marginally significant.

Western Highlands. In the plot head, de jure head, and owner samples, fertilizer was the main contributing factor to gender disparities. Our results indicated that the cost of fertilizer was negatively and significantly related to the quantity of fertilizer used on those plots. Household equipment was positively associated with the use of fertilizer on plots that were pooled and headed by men; pooled and de jure plots headed by men; and pooled plots managed by men. Education had a negative effect on age of plot migrant head, and access to credit had a negative effect on the age of migrant head men. Regarding plot managers, planting a single crop on the plot was negatively and significantly related to agricultural equipment.

Bimodal Rainfall Humid Forest. In all plots, except for plot migrant head, fertilizer was the covariate that most magnified gender disparities. We found that, in those plots, the cost of fertilizer had a negative effect on the quantity of fertilizer used per hectare. Access to credit was negatively and significantly linked to fertilizer use in the pooled plot head, de jure plot head, manager, and plot-owner samples; the same held for plots managed by men. The level of education of de jure women heads, women managers, and women owners was positively related to fertilizer use. Household equipment positively affected the use of fertilizer on plots headed by men. In the plot migrant head, the main factor explaining the gap was livestock. The results indicate that access to credit had a negative effect on the livestock of migranthead women.

[^5]
### 5.5. Distributional Decomposition Results

For each agroecological region, decomposition by productivity percentiles is presented in Appendix Table A8. Figure 5 illustrates the evolution of the different components of the productivity gap at various percentiles.

In all plots within agroecological regions, the graph shows a larger endowment effect at the bottom and top of the productivity distribution. This suggests that policies aimed at reducing gender disparities through, for example, improved access to productive resources, might be most effective if directed specifically toward men and women farmers with relatively low and high productivity levels. Further, and relative to other plots and agroecological regions, resource endowment at the lower and upper part of the distribution was more pronounced on the plot migrant sample in two agroecological regions (the Sahel and the Bimodal Rainfall Humid Forest).

In all plots and agroecological regions, gender differences in returns to endowments drive gender disparities, and women's structural disadvantage is the primary contributor. Again, these results are relevant from a policy perspective: addressing gender differences in resource endowments would have the highest impact on the poorest and wealthiest farmers, and migrant farmers in the Sahel and Bimodal Rainfall Humid Forest regions would benefit the most. Our results are consistent with those of Singbo et al. (2021) who found that a large portion of gender disparities in productivity among farm households in Mali could be attributed to an unexplained structural effect, namely women's structural disadvantage.

Figure 5: Gender Disparity Components by Percentile across Agroecological Zones




Source: Authors' construction based on IRAD.

## VI. Conclusion and Policy Implications

The main results of our study are as follows. First, we found that gender disparities differ across agroecological zones and gender indicators. They are more acute in the arid Sahel agroecological area for all plot headships, except for plot managers (productivity is biased toward women). In the Bimodal Rainfall Humid Forest zone, gender disparities are absent in all gender indicators and, in the Western Highlands region, gender disparities are absent among plot managers while
discrimination remains against all other women farmers. Second, in all agroecological regions and for all plot headships, we found that unobserved factors were the main contributors to gender disparities in productivity. Furthermore, women's structural disadvantage drives gender differences in returns to resource endowments, and the contributing covariates differ by gender and geography. Finally, in all plots and agroecological regions, and across the agricultural productivity distribution, the endowment effect is more pronounced for the poorest and wealthiest farmers and the drivers differ between both groups of farmers.

These results have implications for agricultural policy. First, the gender imbalance in returns to resource endowments should be addressed. Given the primary contribution of women's structural disadvantage to gender disparities, attention to gender differences in returns to resource endowment could have large payoffs. Second, differences in observed resource endowments are important at the lower and upper levels of agricultural productivity. Therefore, providing inputs to the poorest and wealthier farmers may help reduce gender differences in agricultural productivity for all plot headships.

## References

Aguilar, A., Carranza, E., Goldstein, M., Kilic, T., and Oseni, G. (2015). Decomposition of Gender Differentials in Agricultural Productivity in Ethiopia. Agricultural Economics, 46, 311-334.

Ahmed, S. and McGillivray, M. 2015. Human Capital, Discrimination, and the Gender Wage Gap in Bangladesh. World Development, 67, 506-524.
Akresh, R. (2005). Understanding Pareto Inefficient Intrahousehold Allocations. IZA Discussion Paper No. 1858, 1-32.

Ali, D., Bowen, D., Deininger, K., and Duponchel, M. (2016). Investigating the Gender Gap in Agriculture Productivity: Evidence From Uganda. World Development, 87, 152-170.

Anunobi, F. (2002). Women and Development in Africa: From Marginalization to Gender Inequality. African Social Science Review, 2(2) Article 3, 40-63.
Araar, A. (2016). Percentile Weighted Regression. PEP-PMMA Technical Note Series (PTN 01), 1-7.

Benson, T., Chamberlin, J., and Rhinehart, I. (2005). An Investigation of the Spatial Determinants of the Local Prevalence of Poverty in Rural Malawi. Food Policy, 30, 532-550.

Blinder, A. (1973). Wage Discrimination: Reduced Form and Structural Estimates. Journal of Human Resources, 8, 436-455.

Brummett, E.R., Gockowski, J., Pouomogne, V., and Muir, J. (2011). Targeting Agricultural Research and Extension for Food Security and Poverty Alleviation: A Case Study of Fish Farming in Central Cameroon. Food Policy, 36, 805-814.

Christiaensen, L., Demery, L., and Kuhl, J. (2011). The (Evolving) Role of Agriculture in Poverty Reduction-An Empirical Perspective. Journal of Development Economics, 96(2), 239-254.

Collier, P. and Dercon, S. (2014). African Agriculture in 50 Years: Smallholders in a Rapidly Changing World? World Development, 63, 92-101.

Cotton, J. (1998). On the Decomposition of Wage Differentials. The Review of Economics and Statistics, 70(2), 236-243.

Croppenstedt, A., Goldstein, M., and Rosas, N. (2013). Gender and Agriculture: Inefficiencies, Segregation, and Low Productivity Traps. World Bank Research Observer, 28(1), 79-109.

De La O Campos, A.P., Covarrubias, K.A., and Patron, A.P. (2016). How Does the Choice of the Gender Indicator Affect the Analysis of Gender Differences in Agricultural Productivity? Evidence From Uganda. World Development, 77, 17-33.

Djurfeldt, A.A., Djurfeldt, G., and Lodin, J.B. (2013). Geography of Gender Gaps: Regional Patterns of Income and Farm-Nonfarm Interaction Among Male- and Female-Headed Households in Eight African Countries. World Development, 48, 32-47.

Doss, C.R. (2018). Women and Agricultural Productivity: Reframing the Issues. Development Policy Review, 36(1), 35-50.

Farrow, A., Larrea, C., Hyman, G., and Lema, G. (2005). Exploring the Spatial Variation of Food Poverty in Ecuador. Food Policy, 30, 510-531.

Filmer, D. and Pritchett, L. (2001). Estimating Wealth Effects Without Expenditure Data—or Tears: An Application to Educational Enrollments in States of India. Demography, 38, 115-132.

Firpo, S., Fortin, N.M., and Lemieux, T. (2009). Unconditional Quantile Regressions. Econometrica, 77(3), 953-973.

Fisher, M. and Kandiwa, V. (2014). Can Agricultural Input Subsidies Reduce the Gender Gap in Modern Maize Adoption? Evidence From Malawi. Food Policy, 45, 101-111.

Fortin, N.M. (2006). Greed, Altruism, and the Gender Wage Gap. Technical Report, University of British Columbia. Available at http://www.econ.ubc.ca/nfortin/fortinat8.pdt.

Fuwa, N. (2000).The Poverty and Heterogeneity Among Female-Headed Households Revisited: The Case of Panama. World Development, 28(8), 1515-1542.

Goldstein, M. and Udry, C. (2008). The Profits of Power: Land Rights and Agricultural Investment in Ghana. Journal of Political Economy, 116(6), 980-1022.

Heckman, J. (1979). Sample Selection Bias As a Specification Error. Econometrica, 47(1), 153-161.

Jann, B. (2008). The Blinder-Oaxaca Decomposition for Linear Regression Models. The Stata Journal, 8(4), 453-479.

Kazianga, H. and Wahhaj, Z. (2013). Gender, Social Norms, and Household Production in Burkina Faso. Economic Development and Cultural Change, 6(13), 539-576.

Kilic, T., Palacios-Lopez, A., and Goldstein, M. (2015). Caught in a Productivity Trap: A Differential Perspective on Gender Differences in Malawian Agriculture. World Development, 70, 416-463.

Mbratana, T. and Fotié Kenne, A. (2018). Investigating Gender Wage Gap in Employment: A Microeconometric Type-Analysis for Cameroon. International Journal of Social Economics 45(5), 847-865.

Neumark, D. (1988). Employers' Discriminatory Behavior and the Estimation of Wage Discrimination. Journal of Human Resources, 23(3), 279-295.

Oaxaca, R. (1973). Male-Female Wage Differentials in Urban Labor Markets. International Economic Review, 14, 693-709.

Oaxaca, R. and Ransom, M. (1994). On Discrimination and the Decomposition of Wage Differentials. Journal of Econometrics, 61(1), 5-21.

Oseni, G., Corral, P., Goldstein, P., and Winters, P. (2015). Explaining Gender Differentials in Agricultural Production in Nigeria. Agricultural Economics, 46, 285310.

Owens, T., Hoddinott, J., and Kinsey, B. (2003) The Impact of Agricultural Extension on Farm Production in Resettlement Areas of Zimbabwe. Economic Development and Cultural Change, 51(2), 337-357.

Palacios-Lopez, A. and Lopez, R. (2015). The Gender Gap in Agricultural Productivity: The Role of Market Imperfections. Journal of Development Studies, 51(9), 11751192.

Peterman, A., Quisumbing, A.R., Behrman, J., and Nkonya, E. (2011). Understanding the Complexities Surrounding Gender Differences in Agricultural Productivity in Nigeria and Uganda. Journal of Development Studies, 47(10), 1482-1509.

Ragasa, C., Berhane, G., Tadesse, F., and Taffesse, A.S. (2015). Gender Differences in Access To Extension Services and Agricultural Productivity. Journal of Agricultural Education and Extension 19(5), 437-468.

Reimers, C.W. (1983). Labor Market Discrimination Against Hispanic and Black Men. The Review of Economics and Statistics, 65(4), 570-579.

Singbo, A., Njuguna-Mungai, E., Yila, J.O., and Sissoko, K. (2021). Examining the Gender Productivity Gap among Farm Households in Mali. Journal of African Economies, 30(3), 251-284.

Slavchevska, V. (2015). Gender Differences in Agricultural Productivity: The Case of Tanzania. Agricultural Economics, 46, 335-355.
Udry, C., Hoddinott, J., Alderman, H., and Haddad, L. (1995). Gender Differentials in Farm Productivity: Implications for Household Efficiency and Agricultural Policy. Food Policy 20(5), 407-423.
Udry, C. (1996). Gender, Agricultural Production, and the Theory of the Household. Journal of Political Economy, 104(5), 1010-1046.

Vanlauwe, B., Coyne, D., Gockowski, J., Hauser, S., Huising, J., Masso, C., Nziguheba, G., Schut, M., and Van Asten, P. (2014). Sustainable Intensification and the African Smallholder Farmer. Current Opinion in Environmental Sustainability, 8, 15-22.
Vitalis Pemunta, N. (2017). When "Property Cannot Own Property": Women's Lack of Property Rights in Cameroon. African Journal of Economic and Sustainable Development, 6(1), 67-85.

Yengoh, G. T., Hickler, T., and Tchuinte, A. (2011). Agro-Climatic Resources and Challenges to Food Production in Cameroon. Geocarto International, 26, 251-273.

## Appendix

Table A1: Sample Selection by Agroecological Zone

| Plot heads | Sahel |  | Western Highlands |  | Bimodal Rainfall Humid Forest |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Men | Women | Men | Women | Men | Women |
| Plot head | 1,067 | 550 | 693 | 538 | 115 | 112 |
| Plot de jure head | 1,003 | 614 | 730 | 501 | 124 | 103 |
| Plot migrant head | 1,008 | 609 | 706 | 525 | 131 | 96 |
| Plot manager | 692 | 925 | 599 | 632 | 133 | 94 |
| Plot holder | 1,029 | 588 | 718 | 513 | 117 | 110 |
| Total | 1,617 |  | 1,231 |  | 227 |  |

Source: Authors' calculations based on IRAD.

Table A2: Definition of Variables

| Variable | Definitions of variable |
| :---: | :---: |
| Production and productivity |  |
| Agricultural production | Following past studies (e.g., Owens, Hoddinott \& Kinsey, 2003; Peterman et al., 2011; Ragasa et al., 2015), the gross revenues from crop production are calculated by multiplying the quantity of harvest (in kilograms) of each crop on the plot by the median price received by farmers in a specific village for each crop. 8 The gross value of harvest is calculated by summing up the values of all crops harvested on the plot. |
| Agricultural productivity | Our main dependent variable, the agricultural productivity is measured by dividing the value of harvest (in Central African Francs; hereafter CFA) by the plot size expressed in hectares. ${ }^{9}$ |
| Household characteristics |  |
| Age | Age of the plot head |
| Education | Number of years of schooling of plot head |
| Married | 1 if individual is married |
| Single | 1 if individual is single |
| Widowed | 1 if individual is widowed |
| Divorced | 1 if individual is divorced |
| Adult women | Number of adult women in the household (persons) |
| Adult men | Number of adult men in the household (persons) |
| Household size | Number of adult men and women in the household |
| Child-dependency ratio | Number of household members aged below 15 and above 64 over those in the labor force (i.e., 15-64, inclusive) |
| Head of the household | 1 if individual is head of the household |
| Number of children, aged 0-5 in the household | Number of children aged $\leq 5$ in the household |
| Number of adults, aged 15 and higher in the household | Number of adults aged $\geq 15$ in the household |
| Non-farm income | Value of non-farm income at the household level in CFA |

[^6]| Variables | Definitions of variables |
| :---: | :---: |
| Livestock | Number of livestock owned by the household |
| Household wealth | Total value of the household's physical assets (i.e., the number of physical assets times price of acquisition). The components reflecting household ownership of physical assets are: bath tub, mirror, library, cabinet/drawers, bucket, radio-cassette, drum or barrel, sofa, spoon/fork, bed sheet, jerry can, vehicle, pots, broom, straw mattress, radio, motorcycle, stockpots, rifle, TV, bed, bike, modern mattress, mat, stools, chairs, plates, basins, and moped. |
| Plot characteristics |  |
| Land area | Area of plot in hectare |
| Main cropping | 1 if main crop is cultivated |
| Intercropping | 1 if plot is intercropped |
| Plot distance to home | Distance from homestead to plot in km |
| Cost of irrigation | Cost of irrigation in CFA |
| Access to credit | 1 if access to credit in kind |
| Labor and Inputs |  |
| Adult laboring men in family | Number of adult family laboring men used on plot |
| Adult laboring women in family | Number of adult family laboring women used on plot |
| Child laborers in family | Number of children who provide family labor on plot |
| Hired men | Number of hired men used on plot |
| Hired women | Number of hired women used on plot |
| Hired child labor | Number of children who provide hired labor on plot |
| Fertilizer per hectare | Quantity of fertilizer (kg) per hectare |
| Herbicide per hectare | Quantity of herbicide (kg) per hectare |
| Seed per hectare | Quantity of seed (kg) per hectare |
| Household agricultural equipment | Total cost of agricultural equipment i.e., number of agricultural equipment times the unit price of purchase. The household's agricultural tools include: knife, machete, agricultural stores, pick axe, watering can, wheelbarrow, shovel, rake, hatchet, motor cultivator, file, plough, sewing machine, cart, sprayers, disk harrow/harrow, ox for farm work, donkeys, hoes, and tractors. |

Table A3: Descriptive Statistics by Agroecological Zone

|  | Plot by headship |  |  |  | Plot by de jure headship |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | All | Men | Women | Difference | All | Men | Women | Difference |
| Observations | 1,583 | 1,046 | 537 |  | 1,583 | 983 | 600 |  |
| Production and Productivity |  |  |  |  |  |  |  |  |
| Total | 1566679 | 1670406 | 1364631 | 305775** | 1566679 | 1607439 | 1499899 | 107539.4 |
| Total/hectare | 1772076 | 1968191 | 1390802 | $577388.9^{* * *}$ | 1772076 | 1837712 | 1664761 | 172950.6 |
| Rice/hectare | 1313061 | 1336125 | 1268409 | 67715.32 | 1313061 | 1292873 | 1346126 | 53252.57 |
| Maize/hectare | 583765.4 | 573582.1 | 666982.8 | 93400.72 | 583765.40 | 593250.20 | 565958.20 | 27292.02 |
| Groundnuts/hectare | 809273.1 | 836122 | 578271 | 257851 | 809273.1 | 964521.1 | 507750.8 | 456770.3 |
| Household characteristics |  |  |  |  |  |  |  |  |
| Age (years) | 33.740 | 36.677 | 28.044 | 8.633*** | 33.740 | 33.778 | 33.679 | 0.099 |
| Years of schooling | 2.299 | 2.091 | 2.704 | $0.613^{* * *}$ | 2.299 | 2.225 | 2.420 | 0.195 |
| Married | 0.632 | 0.638 | 0.620 | 0.018 | 0.632 | 0.613 | 0.663 | 0.050** |
| Unmarried | 0.368 | 0.362 | 0.380 | 0.018 | 0.368 | 0.387 | 0.337 | 0.050** |
| Adult women | 2.953 | 2.836 | 3.180 | 0.344** | 2.953 | 2.979 | 2.910 | 0.069 |
| Adult men | 3.188 | 3.044 | 3.467 | 0.423** | 3.188 | 3.161 | 3.233 | 0.072 |
| Household size | 6.141 | 5.880 | 6.647 | $0.767^{* * *}$ | 6.141 | 6.140 | 6.143 | 0.004 |
| Child dependency | 0.691 | 0.722 | 0.632 | 0.091*** | 0.691 | 0.704 | 0.671 | 0.034 |
| Non-farm income | 104364.5 | 100007.8 | 112816.4 | 12808.57 | 104364.5 | 100430.9 | 110790.2 | 10359.28 |
| Livestock | 2.996 | 3.085 | 2.822 | 0.263 | 2.996 | 3.014 | 2.966 | 0.048 |
| Household wealth | 116691.7 | 102710.5 | 143815.3 | 41104.83 | 116691.7 | 124824.1 | 103407.1 | 21417.05 |
| Head of household | 0.500 | 0.657 | 0.195 | 0.462*** | 0.500 | 0.514 | 0.476 | 0.039 |
| No children aged 0-5 | 0.369 | 0.299 | 0.505 | 0.206*** | 0.369 | 0.343 | 0.412 | 0.069 |
|  | 3.776 | 3.285 | 4.727 | 1.442*** | 3.776 | 3.763 | 3.796 | 0.033 |
| Plot characteristics |  |  |  |  |  |  |  |  |
| Land area | 1.128 | 1.143 | 1.101 | 0.042 | 1.128 | 1.131 | 1.124 | 0.007 |
| Main cropping | 0.480 | 0.493 | 0.455 | 0.038 | 0.480 | 0.472 | 0.493 | 0.022 |
| Plot distance to home | 2.507 | 2.613 | 2.302 | 0.310** | 2.507 | 2.604 | 2.348 | 0.256** |
| Cost of irrigation | 78713.67 | 78761.48 | 78620.91 | 140.572 | 78713.67 | 78923.73 | 78370.52 | 553.208 |
| Access to credit | 0.174 | 0.178 | 0.167 | 0.011 | 0.174 | 0.184 | 0.158 | 0.026 |
| Labor and Inputs Adult laboring men in family | 8.693 | 8.631 | 8.815 | 0.184 | 8.693 | 8.724 | 8.642 | 0.083 |
| Adult laboring women in family | 5.906 | 6.023 | 5.678 | 0.345 | 5.906 | 5.979 | 5.787 | 0.192 |
| Child laborers in family | 5.218 | 5.276 | 5.104 | 0.173 | 5.218 | 5.391 | 4.935 | 0.456** |
| Hired men | 3.484 | 3.601 | 3.258 | 0.343** | 3.484 | 3.557 | 3.365 | 0.193 |

Table A3 continued

1) Sahel

|  | Plot by headship |  |  |  | Plot by de jure headship |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | All | Men | Women | Difference | All | Men | Women | Difference |
| Hired women | 2.921 | 2.940 | 2.884 | 0.056 | 2.921 | 2.828 | 3.073 | 0.246** |
| Hired child labor | 2.983 | 2.986 | 2.978 | 0.007 | 2.983 | 3.052 | 2.871 | 0.181* |
| Fertilizer (kg/hectare) | 136.380 | 140.419 | 128.545 | 11.874 | 136.380 | 126.839 | 151.966 | 25.128 |
| Herbicide (kg/hectare) | 6.558 | 7.330 | 5.061 | 2.269 | 6.558 | 7.564 | 4.916 | 2.648** |
| Seed (kg/hectare) | 43.471 | 46.098 | 38.376 | 7.721 | 43.471 | 44.961 | 41.038 | 3.924 |
| Agricultural tools | 453423.8 | 240869.3 | 865779.5 | 624910.2 | 453423.8 | 642969.5 | 143791.4 | 499178.2 |
|  | Plot by migrant headship |  |  |  | Plot by manager |  |  |  |
|  | All | Men | Women | Difference | All | Men | Women | Difference |
| Observations | 1,583 | 985 | 598 |  | 1,583 | 909 | 674 |  |
| Production and Productivity |  |  |  |  |  |  |  |  |
| Total | 15669 | 1592089 | 1524824 | 1566679 | 1566679 | 1593598 | 1530374 | 63223.77 |
| Total/hectare | 1772076 | 1789785 | 1742965 | 1772076 | 1772076 | 1851446 | 1665267 | 186178.50 |
| Rice/hectare | 1313061 | 1363099 | 1231769 | 131330.70 | 1313061 | 1303428 | 1325875 | 22447.08 |
| Maize/hectare | 583765.4 | 537753.3 | 708697 | 170943.7 | 583765.4 | 628499 | 429570.2 | 198928.80** |
| Groundnuts/hectare | 809273.1 | 564210.9 | 1516399 | 952188.2 | 809273.1 | 593494.9 | 1540315 | 946819.90* |
| Household characteristics |  |  |  |  |  |  |  |  |
| Age (years) | 33.740 | 34.989 | 31.673 | $3.316^{* * *}$ | 33.740 | 35.268 | 31.698 | 3.570*** |
| Years of schooling | 2.299 | 2.201 | 2.461 | 0.260** | 2.299 | 2.297 | 2.302 | 0.005 |
| Married | 0.632 | 0.622 | 0.649 | 0.027 | 0.632 | 0.627 | 0.639 | 0.012 |
| Unmarried | 0.368 | 0.378 | 0.351 | 0.027 | 0.368 | 0.373 | 0.361 | 0.012 |
| Adult women | 2.953 | 2.978 | 2.911 | 0.067 | 2.953 | 2.682 | 3.315 | $0.633^{* * *}$ |
| Adult men | 3.188 | 3.160 | 3.235 | 0.075 | 3.188 | 2.979 | 3.467 | 0.487*** |
| Household size | 6.141 | 6.138 | 6.146 | 0.008 | 6.141 | 5.662 | 6.782 | 1.120*** |
| Child dependency | 0.691 | 0.701 | 0.675 | 0.026 | 0.691 | 0.751 | 0.612 | $0.140 * * *$ |
| Non-farm income | 104364.50 | 101106.90 | 109756.30 | 8649.46 | 104364.50 | 110647.90 | 99663.76 | 10984.16 |
| Livestock | 2.996 | 3.065 | 2.880 | 0.185 | 2.996 | 3.055 | 2.916 | 0.139 |
| Household wealth | 116691.7 | 120360.7 | 110619 | 9741.67 | 116691.70 | 132928.4 | 94988.14 | 37940.24 |
| Head of household | 0.500 | 0.568 | 0.386 | $0.183^{* * *}$ | 0.500 | 0.663 | 0.282 | $0.381^{* * *}$ |
| No children aged 0-5 | 0.369 | 0.307 | 0.473 | $0.166^{* *}$ | 0.369 | 0.332 | 0.419 | 0.087 |
|  | 3.776 | 3.429 | 4.350 | $0.921^{* * *}$ | 3.776 | 3.143 | 4.624 | $1.481^{* * *}$ |
| Plot characteristics |  |  |  |  |  |  |  |  |
| Land area | 1.128 | 1.147 | 1.097 | 0.050 | 1.128 | 1.130 | 1.126 | 0.004 |
| Main cropping | 0.480 | 0.483 | 0.475 | 0.009 | 0.480 | 0.529 | 0.415 | $0.114^{* * *}$ |
| Plot distance to home | 2.507 | 2.567 | 2.408 | 0.159 | 2.507 | 2.687 | 2.266 | 0.421*** |

Table A3 continued
I) Sahel

|  | Plot by migrant headship |  |  |  | Plot by manager |  |  | Difference |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | All | Men | Women | Difference | All | Men | Women |  |
| Cost of irrigation (CFA) | 78713.67 | 77394.84 | 80896.55 | 3501.71 | 78713.67 | 78466.49 | 79044.08 | 577.589 |
| Access to credit | 0.174 | 0.185 | 0.158 | 0.027 | 0.174 | 0.184 | 0.162 | 0.022 |
| Labor and Inputs Adult laboring men in family | 8.693 | 8.767 | 8.571 | 0.195 | 8.693 | 8.787 | 8.568 | 0.219 |
| Adult laboring women in family | 5.906 | 6.010 | 5.734 | 0.276 | 5.906 | 6.041 | 5.725 | 0.316 |
| Child laborers in family | 5.218 | 5.183 | 5.276 | 0.093 | 5.218 | 5.305 | 5.101 | 0.204 |
| Hired men | 3.484 | 3.432 | 3.571 | 0.140 | 3.484 | 3.586 | 3.348 | 0.238 |
| Hired women |  | 2.949 | 2.874 | 0.076 | 2.920 | 2.948 | 2.884 | 0.064 |
| Hired child labor | $\begin{aligned} & 2.921 \\ & 2.983 \end{aligned}$ | 2.990 | 2.972 | 0.018 | 2.983 | 2.897 | 3.098 | $0.201 * *$ |
| Fertilizer (kg/hectare) |  | 144.108 | 123.589 | 20.520 | 136.380 | 141.249 | 129.871 | 11.378 |
| Herbicide (kg/hectare) | $\begin{aligned} & 136.380 \\ & 6.558 \end{aligned}$ | 5.619 | 8.113 | 2.494* | 6.558 | 7.207 | 5.691 | 1.515 |
| Seed (kg/hectare) | $\begin{aligned} & 43.471 \\ & 453423.8 \end{aligned}$ | 47.168 | 37.354 | 9.814 | 43.471 | 43.062 | 44.018 | 0.956 |
| Agricultural tools |  | 139178.7 | 973553.8 | 834375.1 | 453423.8 | 199519.1 | 792819.6 | 593300 |
|  | Plot by owner |  |  |  |  |  |  |  |
|  | All |  | Men | Wom |  | Differenc |  |  |
| Observations | 1,583 |  | 574 | 1,009 |  | / |  |  |
| Production and Productivity |  |  |  |  |  |  |  |  |
| Total | 1566679 |  | 1374633 | 1675929 |  | 301295.80*** |  |  |
| Total/hectare | 1772076 |  | 1422408 | 1970845 |  | 548437.70*** |  |  |
| Rice/hectare | 1313061 |  | 1239740 | 1354969 |  | 115228.70 |  |  |
| Maize/hectare | 583765.40 |  | 541266.10 | $0 \quad 594800.70$ |  | 53534.62 |  |  |
| Groundnuts/hectare | 809273.10 |  | 475651.70 | -888822.70 |  | 413171 |  |  |
| Household characteristics |  |  |  |  |  |  |  |  |
| Age (years) | 33.740 |  |  | 29.934 | 35.915 |  | 5.982*** |  |  |
| Years of schooling | 2.299 |  | 2.600 | 2.127 |  | $0.473^{* * *}$ |  |  |
| Married | 0.632 |  | 0.643 | 0.626 |  | 0.017 |  |  |
| Unmarried | 0.368 |  | 0.357 | 0.374 |  | 0.017 |  |  |
| Adult women | 2.953 |  | 3.075 | 2.883 |  | 0.191 |  |  |
| Adult men | 3.188 |  | 3.388 | 3.074 |  | $0.314^{*}$ |  |  |
| Household size | 6.141 |  | 6.463 | 5.957 |  | 0.505* |  |  |
| Child dependency | 0.691 |  | 0.656 | 0.712 |  | 0.055 |  |  |
| Non-farm income | 104364.50 |  | 115947.70 | - 97745.47 |  | 18202.23** |  |  |
| Livestock | 2.996 |  | 2.939 | 3.028 |  | 0.089 |  |  |
| Household wealth | 116691.70 |  | 125290.20 | 111778.30 |  | 13511.86 |  |  |


| Head of household | 0.500 | 0.294 | 0.617 | $0.323^{* * *}$ |
| :--- | :--- | :--- | :--- | :--- |
| No children aged 0-5 | 0.369 | 0.474 | 0.309 | $0.165^{* * *}$ |
| No adults aged 15+ | 3.776 | 4.411 | 3.414 | $0.997^{* * *}$ |
| Plot characteristics | 1.128 |  |  |  |
| Land area | 0.480 | 1.090 | 1.150 | $0.060^{* *}$ |
| Main cropping | 2.507 | 2.466 | 0.488 | 0.022 |
| Plot distance to home (km) | 78713.67 | 76830.78 | 2.536 | 79789.60 |
| Cost of irrigation (CFA) | 0.174 | 0.173 | 0.175 | 2958.82 |
| Access to credit |  |  | 0.001 |  |

Table A3 continued
I) Sahel

|  | Plot by owner |  |  |  |
| :--- | :--- | :--- | :--- | :--- |
|  | All | Men | Women | Difference |
| Labor and Inputs |  |  |  |  |
| Adult laboring men in family | 8.693 | 8.719 | 8.678 | 0.041 |
| Adult laboring women in family | 5.906 | 5.818 | 5.956 | 0.138 |
| Child laborers in family | 5.218 | 5.007 | 5.338 | 0.331 |
| Hired men | 3.484 | 3.345 | 3.564 | 0.218 |
| Hired women | 2.920 | 2.803 | 2.988 | 0.186 |
| Hired child labor | 2.983 | 2.968 | 2.992 | 0.025 |
| Fertilizer (kg/hectare) | 136.380 | 127.172 | 141.642 | 14.469 |
| Herbicide (kg/hectare) | 6.558 | 5.178 | 7.347 | 2.169 |
| Seed (kg/hectare) | 43.471 | 39.934 | 45.928 | 5.559 |
| Agricultural tools | 453423.80 | 811355.40 | 248891.50 | 562464 |

II) Western Highlands

|  | Plot by headship |  | Plot by de jure headship |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | All | Men | Women | Difference | All | Men | Women | Difference |
| Observations | 1,120 | 630 | 490 |  | 1,120 | 657 | 463 |  |
| Production and Productivity |  |  |  |  |  |  |  |  |
| Total | 1515290 | 1533724 | 1491590 | 42134.19 | 1515290 | 1479821 | 1565621 | 85799.78 |
| Total/hectare | 2329127 | 2429168 | 2200503 | 228665.30** | 2329127 | 2285359 | 2391233 | 105877.20 |
| Rice/hectare | 2151588 | 2194820 | 2097770 | 97050.31 | 2151588 | 2109678 | 2210170 | 100491.80 |
| Maize/hectare | 551330.5 | 539545.3 | 586686.1 | 47140.80 | 551330.5 | 605255.0 | 457347.9 | 147907.10 |
| Groundnuts/ hectare | 924904.8 | 990594.6 | 727835.4 | 262759.20 | 924904.8 | 795227.8 | 1158323. | 363095.50 |
| Household characteristics |  |  |  |  |  |  |  |  |
| Age (years) | 35.842 | 37.450 | 33.771 | 3.679*** | 35.842 | 36.212 | 35.303 | 0.909 |
| Years of schooling | 3.391 | 3.405 | 3.372 | 0.034 | 3.391 | 3.375 | 3.413 | 0.038 |
| Married | 0.589 | 0.579 | 0.602 | 0.024 | 0.589 | 0.600 | 0.573 | 0.027 |
| Unmarried | 0.411 | 0.421 | 0.398 | 0.024 | 0.411 | 0.400 | 0.427 | 0.027 |
| Adult women | 2.214 | 2.180 | 2.258 | 0.078 | 2.214 | 2.201 | 2.234 | 0.032 |
| Adult men | 2.632 | 2.593 | 2.682 | 0.089 | 2.632 | 2.614 | 2.659 | 0.045 |


| Household size | 4.846 | 4.773 | 4.941 | 0.167 | 4.846 | 4.815 | 4.892 | 0.077 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Child dependency | 0.719 | 0.729 | 0.707 | 0.022 | 0.719 | 0.702 | 0.745 | 0.043 |
| Non-farm income | 79394.61 | 80482.19 | 77993.69 | 2488.50 | 79394.61 | 79610.73 | 79079.70 | 531.025 |
| Livestock |  |  |  |  |  |  |  |  |
| Household wealth | 3.044 | 3.068 | 3.013 | 0.055 | 3.044 | 3.048 | 3.038 | 0.010 |
| Head of <br> household <br> No children aged <br> $0-5$ <br> No adults aged <br> $15+$ | 0.288 | 0.371 | 0.180 | $0.191^{* * *}$ | 0.288 | 0.312 | 0.251 | $0.061^{* *}$ |

Table A3 continued
II) Western Highlands

|  | Plot by headship |  | Plot by de jure headship |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | All | Men | Women | Difference | All | Men | Women | Difference |
| Plot characteristics |  |  |  |  |  |  |  |  |
| Land area | 0.754 | 0.742 | 0.770 | 0.028 | 0.754 | 0.748 | 0.763 | 0.015 |
| Main cropping | 0.256 | 0.153 | 0.388 | $0.236{ }^{* * *}$ | 0.256 | 0.263 | 0.246 | 0.018 |
| Plot distance to home | 3.263 | 3.206 | 3.338 | 0.132 | 3.263 | 3.289 | 3.225 | 0.064 |
| Cost of irrigation | 79069.46 | 79061.33 | 79079.93 | 18.598 | 79069.46 | 78247.26 | 80267.47 | 2020.21 |
| Access to credit | 0.102 | 0.108 | 0.095 | 0.013 | 0.102 | 0.110 | 0.092 | 0.018 |
| Labor and Inputs Adult laboring men in family | 6.071 | 6.216 | 5.885 | 0.332 | 6.071 | 6.129 | 5.988 | 0.141 |
| Adult laboring women in family | 3.218 | 3.255 | 3.169 | 0.086 | 3.218 | 3.208 | 3.232 | 0.023 |
| Child laborers in family | 3.056 | 3.214 | 2.853 | 0.360** | 3.056 | 3.022 | 3.106 | 0.084 |
| Hired men | 3.734 | 3.758 | 3.703 | 0.055 | 3.734 | 3.832 | 3.591 | 0.241 |
| Hired women | 3.224 | 3.302 | 3.125 | 0.177 | 3.224 | 3.197 | 3.263 | 0.066 |
| Hired child labor | 2.936 | 2.928 | 2.946 | 0.018 | 2.936 | 2.881 | 3.016 | 0.135 |
| Fertilizer (kg/hectare) | 206.645 | 207.485 | 205.564 | 1.921 | 206.645 | 205.686 | 208.043 | 2.357 |
| Herbicide (kg/hectare) | 10.529 | 12.882 | 7.497 | 5.385 | 10.529 | 8.960 | 12.814 | 3.853 |
| Seed (kg/hectare) | 68.821 | 72.077 | 64.626 | 7.452 | 68.821 | 68.066 | 69.921 | 1.855 |
| Agricultural tools | 471393.8 | 770625.5 | 85952.23 | 684673.3 | 471393.8 | 701918.2 | 135500.0 | 566418.2 |
| Plot by migrant headship |  |  |  |  | Plot by manager |  |  |  |
|  | All | Men | Women | Difference | All | Men | Women | Difference |
| Observations | 1,120 | 639 | 481 |  | 1,120 | 576 | 544 |  |
| Production and Productivity |  |  |  |  |  |  |  |  |
| Total | 1515290 | 1531057 | 1494344 | 36713.16 | 1515290 | 1545331 | 1483482 | 61848.89 |
| Total/hectare | 2329127 | 2383208 | 2257280 | 125927.90 | 2329127 | 2473456 | 2176308 | 297147.70*** |
| Rice/hectare | 2151588 | 2189848 | 2102523 | 87324.53 | 2151588 | 2235918 | 2062652 | 173265.90** |


| Maize/hectare | 551330.5 | 463437.2 | 749462.9 | 286025.7** | 551330.5 | 583873.7 | 507675.1 | 76198.52 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Groundnuts/hect are | 924904.8 | 1007258 | 730551.4 | 276706.50 | 924904.8 | 1094648 | 681359.8 | 413288.40 |
| Household characteristics |  |  |  |  |  |  |  |  |
| Age (years) | 35.843 | 36.769 | 34.596 | 35.842*** | 35.842 | 36.111 | 35.559 | 0.551 |
| Years of schooling | 3.391 | 3.346 | 3.451 | 0.106 | 3.391 | 3.528 | 3.245 | 0.283 |
| Married | 0.589 | 0.581 | 0.600 | 0.019 | 0.589 | 0.552 | 0.628 | 0.075*** |
| Unmarried | 0.411 | 0.419 | 0.400 | 0.019 | 0.411 | 0.448 | 0.372 | 0.075*** |
| Adult women | 2.214 | 2.229 | 2.194 | 0.035 | 2.214 | 2.165 | 2.267 | 0.103 |
| Adult men | 2.632 | 2.640 | 2.621 | 0.019 | 2.632 | 2.560 | 2.708 | 0.148 |
| Household size | 4.846 | 4.870 | 4.815 | 0.054 | 4.846 | 4.725 | 4.975 | 0.250 |

Table A3 continued
II) Western Highlands


|  | Plot by owner |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | All | Men | Women | Difference |
| Observations | 1,120 | 469 | 651 | / |
| Production and Productivity |  |  |  |  |
| Total | 1515290 | 1498381 | 1527472 | 29091.79 |
| Total/hectare | 2329127 | 2243565 | 2390768 | 147203.10 |
| Rice/hectare | 2151588 | 2095515 | 2193084 | 97569.63 |
| Maize/hectare | 551330.50 | 737430.50 | 466739.70 | 270690.80** |
| Groundnuts/hectare | 924904.80 | 713347.90 | 1014548 | 301199.70 |
| Household characteristics |  |  |  |  |
| Age (years) | 35.842 | 34.721 | 36.643 | 1.922** |
| Years of schooling | 3.391 | 3.353 | 3.418 | 0.065 |
| Married | 0.589 | 0.585 | 0.592 | 0.007 |
| Unmarried | 0.411 | 0.415 | 0.408 | 0.007 |
| Adult women | 2.214 | 2.329 | 2.132 | 0.197 |
| Adult men | 2.632 | 2.741 | 2.554 | 0.186 |
| Household size | 4.846 | 5.070 | 4.687 | 0.384** |
| Child dependency | 0.719 | 0.696 | 0.735 | 0.039 |
| Non-farm income | 79394.61 | 83654.89 | 76350.70 | 7304.20 |
| Livestock | 3.044 | 3.053 | 3.038 | 0.015 |
| Household wealth | 208847 | 378972.80 | 87294.71 | 291678.10 |
| Head of household | 0.288 | 0.205 | 0.347 | $0.142 * * *$ |
| No children aged 0-5 | 0.098 | 0.105 | 0.093 | 0.012 |
| No adults aged 15+ | 4.472 | 4.663 | 4.336 | 0.327*** |
| Plot characteristics |  |  |  |  |
| Land area | 0.754 | 0.774 | 0.740 | 0.034 |
| Main cropping | 0.256 | 0.363 | 0.180 | $0.183^{* * *}$ |
| Plot distance to home (km) | 3.263 | 3.369 | 3.188 | 0.182 |
| Cost of irrigation (CFA) | 79069.46 | 80242.69 | 78231.20 | 2011.49 |
| Access to credit | 0.102 | 0.088 | 0.113 | 0.025 |
| Labor and Inputs |  |  |  |  |
| Adult laboring men in family | 6.071 | 5.838 | 6.238 | 0.400** |
| Adult laboring women in family | 3.218 | 3.131 | 3.280 | 0.149 |
| Child laborers in family | 3.056 | 2.850 | 3.203 | 0.353** |
| Hired men | 3.734 | 3.885 | 3.625 | 0.260 |
| Hired women | 3.224 | 3.146 | 3.280 | 0.134 |
| Hired child labor | 2.936 | 2.922 | 2.946 | 0.024 |
| Fertilizer (kg/hectare) | 206.645 | 212.209 | 202.670 | 9.539 |
| Herbicide (kg/hectare) | 10.529 | 8.289 | 12.129 | 3.840 |
| Seed (kg/hectare) | 68.821 | 64.938 | 71.595 | 6.657 |
| Agricultural tools | 471393.80 | 124835.60 | 719004.30 | 594168.80 |

Table A3 continued
III) Bimodal Rainfall Humid Forest

|  | Plot by headship |  | Plot by de jure headship |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | All | Men | Women | Difference | All | Men | Women | Difference |
| Observations | 193 | 96 | 97 |  | 193 | 105 | 88 |  |
| Production and Productivity |  |  |  |  |  |  |  |  |
| Total | 2753437 | 2691456 | 2814779 | 123323 | 2753437 | 2648900 | 2878168 | 229268.40 |
| Total/hectare | 2503152 | 2454329 | 2551472 | 97142.30 | 2503152 | 2419907 | 2602479 | 182571.40 |
| Rice/hectare | 2354476 | 2252692 | 2456260 | 203568.40 | 2354476 | 2243625 | 2489082 | 245456.70 |
| Maize/hectare | 656314.1 | 1030924 | 344138.7 | 686785.70** | 656314.1 | 1217154 | 291768.2 | 925385.6*** |
| Groundnuts/hec tare | 940696.6 | 887615.5 | 989694.6 | 102079.10 | 940696.6 | 941752 | 939993.1 | 1758.86 |
| Household characteristics |  |  |  |  |  |  |  |  |
| Age (years) | 30.907 | 33.104 | 28.652 | 4.453** | 30.907 | 29.355 | 32.777 | 3.422 |
| Years of schooling | 3.639 | 3.748 | 3.527 | 0.221 | 3.639 | 3.879 | 3.350 | 0.530 |
| Married | 0.581 | 0.626 | 0.536 | 0.90 | 0.581 | 0.653 | 0.495 | 0.158*** |
| Unmarried | 0.419 | 0.374 | 0.464 | 0.090 | 0.419 | 0.347 | 0.505 | $0.158^{* * *}$ |
| Adult women | 4.035 | 4.043 | 4.027 | 0.017 | 4.035 | 3.911 | 4.184 | 0.273 |
| Adult men | 3.749 | 3.522 | 3.982 | 0.460 | 3.749 | 3.863 | 3.612 | 0.251 |
| Household size | 7.784 | 7.565 | 8.009 | 0.444 | 7.784 | 7.774 | 7.796 | 0.022 |
| Child dependency | 0.588 | 0.614 | 0.561 | 0.053 | 0.588 | 0.595 | 0.579 | 0.016 |
| Non-farm income | 130800 | 109758.3 | 152405.4 | 42647.10** | 130800 | 114852 | 149999 | $35146.61^{* *}$ |
| Livestock | 2.802 | 2.791 | 2.813 | 0.021 | 2.802 | 2.863 | 2.728 | 0.135 |
| Household wealth | 88213.48 | 77419.13 | 99296.96 | 21877.83 | 88213.48 | 84624.2 | 92534.56 | 7910.37 |
| Head of household | 0.225 | 0.191 | 0.259 | 0.068 | 0.225 | 0.185 | 0.272 | 0.086 |
| No children aged 0-5 | 0.198 | 0.191 | 0.205 | 0.014 | 0.198 | 0.194 | 0.204 | 0.010 |
| No adults aged 15+ | 4.128 | 4.191 | 4.063 | 0.129 | 4.128 | 4.226 | 4.010 | 0.216 |
| Plot characteristics |  |  |  |  |  |  |  |  |
| Land area | 0.964 | 0.970 | 0.958 | 0.011 | 0.964 | 0.961 | 0.968 | 0.007 |
| Main cropping | 0.220 | 0.026 | 0.420 | $0.394^{* * *}$ | 0.220 | 0.161 | 0.291 | 0.130*** |
| Plot distance to home | 3.979 | 4.214 | 3.738 | 0.477 | 3.979 | 4.074 | 3.864 | 0.210 |
| Cost of irrigation | 80647.58 | 79013.04 | 82325.89 | 3312.85 | 80647.58 | 78439.5 | 83305.83 | 4866.31 |
| Access to credit | 0.088 | 0.096 | 0.080 | 0.015 | 0.088 | 0.089 | 0.087 | 0.001 |
| Labor and Inputs Adult laboring men in family | 9.313 | 9.670 | 8.946 | 0.723 | 9.313 | 9.823 | 8.699 | 1.124* |
| Adult laboring women in family | 4.515 | 4.922 | 4.098 | 0.824** | 4.515 | 4.855 | 4.107 | 0.748** |
| Child laborers in family | 4.797 | 4.896 | 4.696 | 0.199 | 4.797 | 4.976 | 4.583 | 0.393 |
| Hired men | 4.559 | 5.348 | 3.750 | 1.598** | 4.559 | 5.185 | 3.806 | 1.380** |
| Hired women | 3.326 | 3.443 | 3.205 | 0.238 | 3.326 | 3.468 | 3.155 | 0.312 |

Table A3 continued
III) Bimodal Rainfall Humid Forest


Table A3 continued
III) Bimodal Rainfall Humid Forest

|  | Plot by migrant headship |  |  |  | Plot by manager |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | All | Men | Women | Difference | All | Men | Women | Difference |
| Plot characteristics |  |  |  |  |  |  |  |  |
| Land area | 0.964 | 0.973 | 0.952 | 0.021 | 0.964 | 0.936 | 0.984 | 0.048 |
| Main cropping | 0.220 | 0.130 | 0.344 | $0.214^{* * *}$ | 0.220 | 0.181 | 0.248 | 0.067 |
| Plot distance to home (km) | 3.979 | 4.181 | 3.703 | 0.478 | 3.979 | 4.069 | 3.915 | 0.154 |
| Cost of irrigation (CFA) | 80647.58 | 81320.61 | 79729.17 | 1591.44 | 80647.58 | 77978.72 | 82533.83 | 4555.11 |
| Access to credit | 0.088 | 0.084 | 0.094 | 0.010 | 0.088 | 0.096 | 0.083 | 0.013 |
| Labor and Inputs |  |  |  |  |  |  |  |  |
| Adult laboring men in family | 9.313 | 9.588 | 8.938 | 0.650 | 9.313 | 9.287 | 9.331 | 0.044 |
| Adult laboring women in family | 4.515 | 4.641 | 4.344 | 0.297 | 4.515 | 4.851 | 4.278 | 0.573 |
| Child laborers in family | 4.797 | 4.962 | 4.573 | 0.389 | 4.797 | 4.957 | 4.684 | 0.273 |
| Hired men | 4.559 | 4.985 | 3.979 | 1.006 | 4.559 | 4.043 | 4.925 | 0.882 |
| Hired women | 3.326 | 3.519 | 3.063 | 0.457 | 3.326 | 3.128 | 3.466 | 0.339 |
| Hired child labor | 3.348 | 3.359 | 3.333 | 0.025 | 3.348 | 3.298 | 3.383 | 0.086 |
| Fertilizer (kg/hectare) | 220.405 | 141.834 | 327.621 | 185.787 | 220.405 | 162.191 | 261.548 | 99.357 |
| Herbicide (kg/hectare) | 8.963 | 6.076 | 12.902 | 6.826 | 8.963 | 10.751 | 7.699 | 3.052 |
| Seed (kg/hectare) | 66.887 | 57.121 | 80.213 | 23.092 | 66.887 | 75.614 | 60.719 | 14.896 |
| Agricultural tools | 41802.38 | 52312.14 | 27460.94 | 24851.20 | 41802.38 | 29974.68 | 50161.80 | 20187.1 |
| Plot by owner |  |  |  |  |  |  |  |  |
|  |  | All |  | Men | Women |  | Difference |  |
| Observations |  | 193 |  | 93 | 100 |  | / |  |
| Production and Productivity |  |  |  |  |  |  |  |  |
| Total |  | 2753437 |  | 2785311 | 2723793 |  | 61518 |  |
| Total/hectare |  | 2503152 |  | 2528412 | 2479660 |  | 48751.55 |  |
| Rice/hectare |  | 2354476 |  | 2429228 | 2285889 |  | 143338.9 |  |
| Maize/hectare |  | 656314.1 |  | 297903.3 | 1086407 |  | 788503.7*** |  |
| Groundnuts/hectare |  | 940696.6 |  | 905249.6 | 993867.2 |  | 88617.59 |  |
| Household characteristics |  |  |  |  |  |  |  |  |
| Age (years) |  | 30.907 |  | 29.691 | 32.051 |  | 2.360 |  |
| Years of schooling |  | 3.639 |  | 3.482 | 3.786 |  | 0.305 |  |


| Married | 0.581 | 0.555 | 0.052 |  |
| :--- | :--- | :--- | :--- | :--- |
| Unmarried | 0.419 | 0.445 | 0.607 | 0.052 |
| Adult women | 4.035 | 3.991 | 0.393 | 0.258 |
| Adult men | 3.749 | 3.882 | 0.077 | 0.172 |
| Household size | 7.784 | 7.873 | 0.078 |  |
| Child dependency | 0.588 | 0.548 | 4.701 | 46938.03 |
| Non-farm income | 130800 | 154992.7 | 0.625 | 108054.7 |
| Livestock | 2.802 | 2.536 | 368 |  |
| Household wealth | 88213.48 | 117506 | 6.051 | 0.040 |
| Head of household | 0.225 | 0.245 | 60673.5 |  |
| No children aged 0-5 | 0.198 | 0.173 | 0.205 | 0.049 |
| No adults aged 15+ | 4.128 | 4.218 | 0.222 | 0.175 |

Table A3 continued
III) Bimodal Rainfall Humid Forest

|  | Plot by owner |  |  |  |
| :--- | :--- | :--- | :--- | :--- |
|  | All | Men | Women | Difference |
| Plot characteristics |  |  |  |  |
| Land area | 0.964 | 0.963 | 0.965 | 0.003 |
| Main cropping | 0.220 | 0.364 | 0.085 | $0.278^{* * *}$ |
| Intercropping system | 0.780 | 0.636 | 0.915 | $0.278^{* * *}$ |
| Plot distance to home (km) | 3.979 | 3.701 | 4.240 | 0.538 |
| Cost of irrigation (CFA) | 80647.583 | 82604.550 | 78807.690 | 3796.853 |
| Access to credit | 0.088 | 0.073 | 0.103 | 0.030 |
| Labor and Inputs |  |  |  |  |
| Adult laboring men in family | 9.313 | 9.036 | 9.573 | 0.536 |
| Adult laboring women in family | 4.515 | 4.118 | 4.889 | $0.771^{* *}$ |
| Child laborers in family | 4.797 | 4.991 | 4.615 | 0.376 |
| Hired men | 4.559 | 3.918 | 5.162 | $1.244^{*}$ |
| Hired women | 3.326 | 3.409 | 3.248 | 0.161 |
| Hired child labor | 3.348 | 3.491 | 3.214 | 0.277 |
| Fertilizer (kg/hectare) | 220.405 | 286.737 | 158.042 | 128.694 |
| Herbicide (kg/hectare) | 8.963 | 11.417 | 6.655 | 4.762 |
| Seed (kg/hectare) | 66.887 | 84.384 | 50.437 | 33.947 |
| Agricultural equipment | 41802.38 | 55429.55 | 28990.51 | 26439.03 |

Notes: ***, **, and *indicate significant mean differences at the $1 \%, 5 \%$, and $10 \%$ level, respectively. Source: Authors' calculations based on IRAD.

Table A4: Probit (Marginal Effect) Estimates of Likelihood of Smallholder Farming by Gender and Agroecological Zone

| Variable | Sahel |  | Western Highlands |  | Bimodal Rainfall Humid Forest |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Men | Women | Men | Women | Men | Women |
| Age (years) | -0.004 | 0.008 | 0.009** | 0.001 | 0.001 | 0.015 |
|  | (0.004) | (0.005) | (0.005) | (0.005) | (0.010) | (0.014) |
| Age squared | 0.005 | -0.009 | -0.011* | -0.001 | 0.007 | -0.016 |
|  | (0.005) | (0.007) | (0.007) | (0.007) | (0.013) | (0.022) |
| Education (years) | 0.0002 | 0.004 | -0.006 | -0.011 | 0.039*** | 0.012 |
|  | (0.007) | (0.009) | (0.007) | (0.008) | (0.017) | (0.021) |
| Married | 0.217 | -0.078 | 0.003 | 0.050 | 0.064 | -0.139 |
|  | (0.238) | (0.180) | (0.287) | (0.278) | (0.156) | (0.153) |
| Single | 0.247 | 0.009 | 0.055 | 0.108 | 0.074 | -0.108 |
|  | (0.239) | (0.185) | (0.289) | (0.280) | (0.152) | (0.153) |
| Widowed | 0.144 | 0.134 | 0.016 | 0.035 | 0.054 | -0.088 |
|  | (0.265) | (0.202) | (0.299) | (0.293) | (0.155) | (0.072) |
| No. of children | 0.042** | 0.077*** | 0.032 | -0.075 | 0.024 | 0.144 |
| aged $\leq 5$ in the household | household |  |  |  |  | (0.100) |
| No. of adults, aged | -0.007 | -0.015*** | 0.015* | 0.018** | -0.006 | -0.031 |
| $\geq 15$ in the | (0.005) | (0.006) | (0.009) | (0.010) | (0.025) | (0.031) |
| household |  |  |  |  |  |  |
| Non-farm income | 8.92e-08 | $4.26 \mathrm{e}-08$ | $2.89 \mathrm{e}-07^{* *}$ | 7.44e-08 | 1.87e-07 | 1.19e-07 |
|  | (0.000) | (0.000) | (0.000) | (0.000) | (0.000) | (0.000) |
| Wealth of the | $-2.42 \mathrm{e}-07^{* * *}$ | -1.57e-08 | 4.04e-08 | -1.61e-08 | -3.45e-08 | -1.22e-07 |
| household | (0.000) | (0.000) | (0.000) | (0.000) | (0.000) | (0.000) |
| Head of the | 0.067 | 0.099** | 0.058 | -0.093* | 0.129 | -0.012 |
| household | (0.044) | (0.057) | (0.042) | (0.057) | (0.094) | (0.099) |
| Pseudo-R2 | 0.016 | 0.031 | 0.020 | 0.017 | 0.061 | 0.060 |
| Number of | 1,066 | 550 | 693 | 538 | 115 | 112 |

Notes: ${ }^{* * *}{ }^{* *}$, and * indicate statistical significance at the $1 \%, 5 \%$, and $10 \%$ levels, respectively.
Source: Authors' calculations based on IRAD.

Table A5: Production Function Estimates by Gender and Agroecological Zone. Dependent Variable: Log (Total Crop Value Per Hectare)

| Variable | Pooled |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Plot head |  | Plot de jure head |  |
|  |  | Women | Men | Women | Men |
| Age (years) | $0.014^{* *}$ | 0.012 | 0.014 | 0.015 | 0.010 |
| Age squared | -0.011 | -0.019 | -0.011 | -0.011 | -0.007 |
| Education (years) | -0.014 | -0.002 | -0.012 | 0.014 | -0.034* |
| Married | 0.024 | -0.035 | 0.124 | 0.112 | 0.009 |
| Household size | -0.003 | -0.005 | 0.002 | -0.005 | 0.0001 |
| Child-dependency ratio | -0.082* | -0.131* | -0.059 | -0.074 | -0.090* |
| Livestock | 0.001 | 0.002 | 0.002 | -0.002 | 0.004 |
| Plot size | -0.459*** | -0.358*** | $-0.511^{* * *}$ | -0.421*** | -0.496*** |
| Maincropping | 0.032 | -0.013 | 0.185** | -0.079 | 0.105 |
| Plot distance to home | -0.013 | -0.018 | -0.013 | -0.012 | -0.017 |
| Cost of irrigation (log) | -0.002 | 0.031 | -0.026 | -0.008 | -0.003 |
| Adult laboring men in family | 0.004 | 0.006 | 0.005 | -0.010 | 0.009 |
| Adult laboring women in family | -0.002 | 0.011 | 0.011 | 0.014 | -0.008 |
| Child laborers in family | -0.0009 | -0.026** | -0.001 | -0.022* | -0.002 |
| Hired men | -0.001 | 0.012 | -0.009 | -0.006 | 0.001 |
| Hired women | -0.005 | 0.003 | -0.012 | -0.0004 | -0.010 |
| Hired child labor | 0.003 | -0.010 | 0.010 | -0.008 | 0.007 |
| Fertilizer (kg/hectare) (log) | -0.011 | -0.023 | -0.003 | -0.036 | -0.003 |
| Herbicide (kg/hectare) (log) | 0.030 | 0.050 | 0.013 | 0.0227 | 0.037 |
| Seed (kg/hectare) (log) | $0.186^{* *}$ | 0.104 | $0.193^{* *}$ | 0.250*** | $0.154^{* *}$ |
| Agricultural tools(log) | 0.006 | 0.024 | 0.003 | 0.010 | 0.009 |
| Mill's ratio | 0.998*** | 1.483*** | 0.583 | 0.914* | 1.078** |
| Number of observations | 1,580 | 537 | 1,043 | 600 | 980 |
| R-squared | 0.315 | 0.355 | 0.363 | 0.379 | 0.319 |

Table A5 continued
I) Sahel

| Variable | Plot migrant head |  | Plot manager |  | Plot owner |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Women | Men | Women | Men | Women | Men |
| Age (years) | 0.005 | $0.018^{* *}$ | 0.013 | 0.015 | 0.009 | 0.015* |
| Age squared | 0.001 | -0.017* | -0.011 | -0.016 | -0.010 | -0.013 |
| Education (years) | -0.006 | -0.022 | -0.019 | -0.002 | -0.003 | -0.013 |
| Married | 0.066 | -0.005 | 0.093 | -0.001 | -0.015 | 0.110 |
| Household size | 0.0003 | -0.005 | -0.002 | 0.0001 | -0.009 | 0.001 |
| Child-dependency ratio | -0.060 | -0.096* | -0.083* | -0.103 | -0.084 | -0.078 |
| Livestock | 0.008 | -0.001 | -0.005 | 0.008 | 0.002 | 0.001 |
| Plot size | $-0.471^{* * *}$ | -0.456*** | $-0.544^{* * *}$ | -0.309*** | $-0.377^{* * *}$ | $-0.531^{* * *}$ |
| Maincropping | -0.107 | 0.136* | 0.185* | -0.140* | 0.000 | 0.098 |
| Plot distance to home | -0.020 | -0.010 | -0.012 | -0.013 | -0.015 | -0.013 |
| Cost of irrigation (log) | 0.028 | -0.010 | -0.004 | -0.008 | -0.006 | -0.011 |
| Adult laboring men in family | -0.003 | 0.008 | 0.007 | 0.003 | 0.009 | 0.002 |
| Adult laboring women in family | 0.006 | -0.005 | -0.011 | 0.005 | -0.0003 | -0.003 |
| Child laborers in family | -0.006 | -0.011 | 0.000 | -0.020* | -0.017 | -0.005 |
| Hired men | 0.009 | -0.002 | -0.012 | 0.011 | 0.008 | -0.010 |
| Hired women | 0.003 | -0.015 | -0.012 | -0.0001 | 0.001 | -0.007 |
| Hired child labor | -0.015 | 0.016 | 0.026 | -0.011 | -0.016 | 0.013 |
| Fertilizer (kg/hectare) (log) | -0.087* | 0.041 | -0.026 | 0.009 | -0.041 | -0.006 |
| Herbicide (kg/hectare) (log) | 0.035 | 0.027 | 0.019 | 0.044 | 0.019 | 0.030 |
| Seed (kg/hectare) (log) | 0.159* | $0.0175^{* *}$ | $0.186^{* *}$ | $0.176^{* *}$ | 0.206*** | 0.159** |
| Agricultural tools (log) | 0.005 | 0.012 | 0.013 | 0.004 | 0.015 | 0.009 |
| Mill's ratio | 1.021** | 1.134** | 0.795* | $1.261^{* * *}$ | 1.539*** | 0.708 |
| Number of observations | 598 | 982 | 907 | 673 | 572 | 1,008 |
| R-squared | 0.338 | 0.361 | 0.357 | 0.371 | 0.331 | 0.355 |

Table A5 continued
II) Western Highlands

| Variable | Pooled |  | Plot head |  | Plot de jure head |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Women | Men | Women | Men |
| Age (years) | 0.007 |  | 0.014 | 0.001 | 0.013 | 0.001 |
| Age squared | -0.008 |  | -0.018 | -0.001 | -0.013 | -0.003 |
| Education (years) | 0.009 |  | 0.021 | 0.003 | 0.010 | 0.010 |
| Married | -0.012 |  | -0.004 | -0.024 | 0.012 | -0.026 |
| Household size | 0.016** |  | 0.017* | 0.018* | 0.019* | 0.017* |
| Child-dependency ratio | -0.013 |  | -0.021 | -0.0001 | -0.036 | 0.019 |
| Livestock | -0.005 |  | -0.029** | 0.007 | -0.005 | -0.002 |
| Plot size | -0.433*** |  | -0.528*** | $-0.364^{* * *}$ | -0.409** | -0.422*** |
| Maincropping | -0.002 |  | -0.009 | 0.148 | -0.043 | 0.000 |
| Plot distance to home | -0.004 |  | -0.0004 | -0.007 | -0.011 | 0.002 |
| Cost of irrigation (log) | -0.023 |  | -0.011 | -0.028 | -0.028 | -0.018 |
| Adult laboring men in family | 0.002 |  | -0.0004 | 0.005 | 0.006 | -0.003 |
| Adult laboring women in family | -0.014 |  | -0.016 | -0.014 | -0.019 | -0.007 |
| Child laborers in family | -0.012 |  | 0.0003 | -0.023* | -0.017 | -0.007 |
| Hired men | 0.011 |  | 0.006 | 0.013 | 0.011 | 0.012 |
| Hired women | 0.006 |  | -0.002 | 0.015* | -0.006 | 0.012 |
| Hired child labor | -0.001 |  | -0.017 | 0.011 | -0.002 | -0.004 |
| Fertilizer (kg/hectare) (log) | 0.011 |  | -0.040 | 0.063 | 0.029 | -0.004 |
| Herbicide (kg/hectare) (log) | 0.013 |  | -0.004 | 0.023 | -0.030 | 0.060* |
| Seed (kg/hectare) (log) | $0.108^{* *}$ |  | 0.098 | 0.094* | $0.141^{*}$ | 0.070 |
| Agricultural tools(log) | 0.014 |  | 0.012 | 0.013 | 0.005 | 0.015 |
| Mill's ratio | -0.669* |  | -0.346 | -0.820 | -0.865 | -0.680 |
| Number of observations | 1,126 |  | 491 | 635 | 464 | 662 |
| R-squared | 0.330 |  | 0.352 | 0.354 | 0.315 | 0.381 |
| Variable | Plot migrant head |  | Plot manager |  | Plot owner |  |
|  | Women | Men | Women | Men | Women | Men |
| Age (years) | 0.013 | 0.002 | 0.015 | 0.002 | 0.008 | 0.007 |
| Age squared | -0.016 | -0.002 | -0.018 | -0.002 | -0.010 | -0.008 |
| Education (years) | 0.019 | 0.003 | 0.008 | 0.007 | 0.018 | 0.003 |
| Married | -0.003 | -0.016 | -0.039 | -0.001 | -0.006 | -0.031 |
| Household size | 0.013 | 0.019* | 0.019* | 0.017* | 0.016* | 0.018* |
| Child-dependency ratio | -0.031 | 0.0001 | 0.018 | -0.027 | -0.033 | 0.005 |
| Livestock | -0.012 | -0.003 | -0.009 | -0.002 | -0.028* | 0.009 |
| Plot size | -0.503*** | -0.393** | ** -0.479*** | * -0.393** | -0.528*** | -0.370*** |
| Maincropping | 0.018 | 0.019 | 0.118 | -0.060 | -0.042 | 0.088 |
| Intercropping | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| Plot distance to home | -0.006 | -0.003 | -0.014 | 0.002 | -0.003 | -0.003 |
| Cost of irrigation (log) | 0.002 | -0.045 | -0.014 | -0.035 | -0.0003 | -0.036 |
| Adult laboring men in family | 0.003 | 0.0003 | -0.001 | 0.004 | -0.014 | 0.012 |
| Adult laboring women in family | -0.026* | -0.001 | -0.020 | -0.010 | -0.008 | -0.022* |
| Child laborers in family | -0.007 | -0.019 | -0.017 | -0.008 | 0.009 | -0.027** |
| Hired men | 0.014 | 0.008 | 0.017 | 0.006 | 0.015* | 0.007 |
| Hired women | -0.003 | 0.014 | 0.002 | 0.010 | -0.006 | 0.020** |
| Hired child labor | -0.025 | 0.017 | 0.002 | -0.006 | -0.010 | 0.010 |

Table A5 continued
II) Western Highlands

| Variable | Plot migrant head |  | Plot manager |  | Plot owner |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Women | Men | Women | Men | Women | Men |
| Fertilizer (kg/hectare) (log) | -0.013 | 0.026 | 0.026 | -0.007 | -0.015 | 0.030 |
| Herbicide (kg/hectare) (log) | 0.000 | 0.024 | 0.032 | -0.009 | -0.002 | 0.027 |
| Seed (kg/hectare) (log) | 0.108* | 0.098* | 0.111* | 0.106* | 0.111 | 0.096* |
| Agricultural tools (log) | 0.016 | 0.008 | 0.008 | 0.018 | 0.032* | -0.001 |
| Mill's ratio | -1.074* | -0.375 | -0.412* | -0.878* | -0.275 | -0.784 |
| Number of observations | 481 | 645 | 577 | 549 | 470 | 656 |
| R-squared | 0.343 | 0.344 | 0.375 | 0.314 | 0.350 | 0.362 |

III) Bimodal rainfall humid forest

| Variable | Pooled | Plot head |  |  | Plot de jure head |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :---: | :---: |
|  |  | Women | Men | Women | Men |  |  |
| Age (years) | -0.008 | 0.001 | -0.014 | 0.015 | -0.016 |  |  |
| Age squared | 0.011 | -0.005 | 0.026 | -0.021 | 0.039 |  |  |
| Education (years) | -0.054 | -0.001 | -0.069 | 0.024 | $-0.100^{* *}$ |  |  |
| Married | 0.099 | 0.279 | -0.148 | 0.327 | -0.342 |  |  |
| Household size | $-0.028^{*}$ | -0.020 | -0.021 | -0.039 | -0.022 |  |  |
| Child-dependency ratio | -0.213 | -0.069 | -0.298 | -0.168 | -0.228 |  |  |
| Livestock | 0.010 | -0.036 | 0.052 | -0.020 | 0.014 |  |  |
| Plot size | -0.129 | 0.019 | -0.355 | -0.001 | -0.183 |  |  |
| Maincropping | 0.048 | 0.276 | 0.000 | $0.454^{*}$ | 0.000 |  |  |
| Plot distance to home | 0.021 | $0.123^{* *}$ | 0.004 | 0.094 | 0.010 |  |  |
| Cost of irrigation (log) | -0.036 | -0.049 | -0.099 | -0.066 | -0.103 |  |  |
| Access to credit | -0.122 | 0.409 | -0.445 | 0.114 | -0.0350 |  |  |
| Adult laboring men in family | $-0.046^{* *}$ | $-0.058^{*}$ | $-0.037^{*}$ | -0.056 | $-0.049^{* *}$ |  |  |
|  |  |  |  |  |  |  |  |
| Adult laboring women in | $0.053^{*}$ | 0.048 | 0.043 | 0.053 | 0.033 |  |  |
| family |  |  |  |  |  |  |  |
| Child laborers in family | $-0.060^{* *}$ | -0.045 | $-0.072^{*}$ | $-0.076^{*}$ | -0.040 |  |  |
| Hired men | 0.008 | 0.051 | 0.004 | 0.038 | 0.001 |  |  |
| Hired women | 0.008 | 0.009 | 0.027 | -0.003 | 0.030 |  |  |
| Hired child labor | $0.044^{*}$ | $0.059^{* *}$ | 0.046 | $0.058^{*}$ | 0.022 |  |  |
| Fertilizer (kg/hectare) (log) | -0.119 | -0.126 | -0.120 | -0.155 | -0.056 |  |  |
| Herbicide (kg/hectare) (log) | -0.132 | -0.126 | -0.166 | -0.208 | -0.074 |  |  |
|  |  |  |  |  |  |  |  |
| Seed (kg/hectare) (log) | 0.070 | 0.073 | -0.022 | 0.104 | -0.152 |  |  |
| Agricultural equipment | -0.029 | 0.081 | -0.023 | 0.109 | $-0.136^{*}$ |  |  |
| (log) |  |  |  |  |  |  |  |
| Mill's ratio | 0.706 | 2.712 | -2.218 | 3.158 | -1.014 |  |  |
| Number of observations | 186 | 95 | 91 | 86 | 100 |  |  |
| R-squared | 0.296 | 0.380 | 0.488 | 0.392 | 0.501 |  |  |

Table A5 continued
III) Bimodal rainfall humid forest

| Variable | Plot migrant head |  | Plot manager |  | Plot owner |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Women | Men | Women | Men | Women | Men |
| Age (years) | -0.003 | -0.021 | 0.005 | 0.007 | 0.015 | -0.006 |
| Age squared | 0.007 | 0.029 | -0.015 | -0.001 | -0.029 | 0.022 |
| Education (years) | -0.039 | -0.074 | -0.067 | -0.055 | -0.014 | -0.042 |
| Married | 0.189 | 0.167 | 0.276 | 0.168 | 0.368 | -0.229 |
| Household size | -0.031 | -0.020 | 0.011 | -0.065*** | -0.009 | -0.023 |
| Child-dependency ratio | -0.353 | -0.094 | 0.223 | -0.626* | 0.005 | -0.231 |
| Livestock | -0.012 | 0.051 | -0.028 | -0.010 | -0.075 | 0.025 |
| Plot size | 0.142 | -0.325 | 0.030 | -0.353 | 0.141 | -0.320 |
| Maincropping | 0.065 | 0.005 | 0.122 | 0.000 | 0.220 | -0.382 |
| Plot distance to home | 0.0002 | 0.014 | 0.032 | 0.006 | 0.083 | -0.009 |
| Cost of irrigation (log) | -0.007 | -0.075 | 0.040 | -0.053 | 0.003 | -0.034 |
| Adult laboring men in family | -0.097*** | -0.019 | -0.036 | -0.043* | -0.026 | -0.050** |
| Adult laboring women in family | 0.033 | 0.066 | 0.072* | 0.050 | 0.035 | 0.050 |
| Child laborers in family | 0.015 | -0.081** | -0.041 | -0.085** | -0.058* | -0.061 |
| Hired men | 0.027 | 0.008 | 0.040 | 0.0003 | 0.018 | 0.015 |
| Hired women | -0.004 | 0.034 | 0.013 | 0.037 | -0.005 | 0.054 |
| Hired child labor | 0.031 | 0.030 | 0.056* | 0.032 | 0.040 | 0.074 |
| Fertilizer (kg/hectare) (log) | -0.194 | -0.080 | -0.357* | -0.047 | -0.204 | -0.135 |
| Herbicide (kg/hectare) (log) | -0.026 | -0.167 | 0.001 | -0.235* | -0.147 | -0.163 |
| Seed (kg/hectare) (log) | 0.206 | -0.012 | 0.227 | -0.105 | 0.073 | -0.035 |
| Agricultural equipment (log) | -0.093 | 0.006 | -0.086 | 0.052 | -0.028 | -0.024 |
| Mill's ratio | 0.543 | 0.047 | 2.808 | -1.001 | 3.493* | -2.401 |
| Number of observations | 78 | 108 | 75 | 111 | 91 | 95 |
| R-squared | 0.481 | 0.377 | 0.453 | 0.396 | 0.388 | 0.504 |

Note. ***, **, and *indicate statistical significance at the $1 \%, 5 \%$, and $10 \%$ level, respectively; district fixedeffects.
Source: Authors' calculations based on IRAD.

Table A6: Panels A-B. Decomposition of Gender Disparities in Productivity By Gender and Agroecological Zone

| I) Sahel |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Plot headship |  |  |  |  |
|  | Plot head | Plot de jure head | Plot migrant head | Plot manager | Plot owner |
| A. Aggregate decomposition |  |  |  |  |  |
| Gender disparities | $0.165^{* * *}$ | 0.031 *** | 0.074*** | -0.120*** | 0.155*** |
|  | (0.005) | (0.005) | (0.005) | (0.005) | (0.005) |
| Endowment effect | -0.030*** | -0.006** | -0.004 | 0.056*** | -0.025*** |
|  | (0.003) | (0.003) | (0.003) | (0.003) | (0.003) |
| Share of gender disparities | -18.2\% | -19.4\% | -5.4\% | -46.7\% | -16.1\% |
| Men's structural advantage | 0.066*** | 0.014*** | 0.030*** | -0.099*** | 0.066*** |
|  | (0.001) | (0.002) | (0.002) | (0.002) | (0.002) |
| Share of gender disparities | 40.0\% | 45.2\% | 40.5\% | 82.5\% | 42.6\% |
| Women's structural | 0.129*** | 0.022*** | 0.049*** | -0.077*** | $0.114^{* * *}$ |
| disadvantage | (0.003) | (0.003) | (0.002) | (0.002) | (0.003) |
| Share of gender disparities | 78.2\% | 71.0\% | 66.2\% | 64.2\% | 73.5\% |
| Number observations | 1,580 | 1,580 | 1,580 | 1,580 | 1,580 |
| B. Detailed Decomposition <br> B1. Endowment Effect |  |  |  |  |  |
| Age (years) | $0.122^{* * *}$ | 0.001 | 0.047*** | -0.050*** | 0.084*** |
|  | (0.004) | (0.002) | (0.002) | (0.002) | (0.004) |
| Age squared | -0.073*** | 0.002** | -0.027*** | 0.030*** | -0.050*** |
|  | (0.004) | (0.001) | (0.002) | (0.002) | (0.003) |
| Education (years) | 0.008*** | 0.003*** | 0.004*** | -0.0001 | 0.006*** |
|  | (0.001) | (0.0003) | (0.0004) | (0.0002) | (0.001) |
| Married | 0.0003*** | -0.001*** | -0.001*** | 0.0002** | -0.0003 |
|  | (0.0001) | (0.0003) | (0.0002) | (0.0001) | (0.002) |
| Household size | 0.003** | 0.000 | 0.000 | -0.004*** | 0.002*** |
|  | (0.001) | (0.0002) | (0.0002) | (0.001) | (0.0004) |
| Child-dependency ratio | -0.008*** | -0.003*** | -0.002*** | 0.012*** | -0.005*** |
|  | (0.0004) | (0.0003) | (0.0003) | (0.001) | (0.0003) |
| Livestock | 0.0004** | 0.0001 | 0.0003 | -0.0002 | 0.0001 |
|  | (0.0002) | (0.0001) | (0.0002) | (0.0002) | (0.0001) |
| Plot size | -0.019*** | -0.003 | -0.023*** | 0.002 | -0.028*** |
|  | (0.001) | (0.002) | (0.002) | (0.002) | (0.002) |
| Maincropping | 0.457*** | -0.260*** | 0.102*** | -1.354*** | 0.260*** |
|  | (0.032) | (0.026) | (0.020) | (0.072) | (0.024) |
| Plot distance to home | -0.004*** | -0.004*** | -0.002*** | 0.006*** | -0.001*** |
|  | (0.0003) | (0.0003) | (0.0002) | (0.0004) | (0.0003) |
| Cost of irrigation (log) | -0.0001 | 0.000 | 0.0001 | 0.000 | -0.0002 |
|  | (0.0001) | (0.0001) | (0.0002) | (0.0001) | (0.0002) |
| Adult laboring men in family | -0.001*** | 0.0004** | 0.001*** | -0.001 *** | -0.0002 |
|  | (0.0001) | (0.0002) | (0.0002) | (0.0002) | (0.0002) |
| Adult laboring women in | -0.001 *** | -0.0004** | $-0.001 * * *$ | $0.001 * * *$ | -0.0003 |
| family | (0.0002) | (0.0002) | (0.0003) | (0.0002) | (0.0002) |

Table A6 continued
I) Sahel

|  | Plot headship |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Plot head | Plot de jure head | Plot migrant head | Plot manager | Plot owner |
| Child laborers in family | -0.001*** | -0.004*** | 0.001*** | 0.002*** | -0.003*** |
|  | (0.0002) | (0.0003) | (0.0002) | (0.0002) | (0.0003) |
| Hired men | -0.0001 | -0.0001 | 0.0001 | 0.0001 | -0.0001 |
|  | (0.0002) | (0.0002) | (0.0001) | (0.0002) | (0.0002) |
| Hired women | -0.0003*** | 0.001*** | -0.0004*** | 0.0003*** | -0.001*** |
|  | (0.0001) | (0.0002) | (0.0001) | (0.0001) | (0.0002) |
| Hired child labor | 0.000 | 0.001*** | 0.0001 | 0.001 *** | 0.0001 |
|  | (0.0001) | (0.0002) | (0.0001) | (0.0002) | (0.0001) |
| Fertilizer (kg/hectare) (log) | 0.0004** | -0.0001 | -0.0001 | -0.001*** | 0.0004** |
|  | (0.0002) | (0.0002) | (0.0002) | (0.0001) | (0.0002) |
| Herbicide (kg/hectare) (log) | -0.0002 | 0.003*** | -0.003*** | -0.001 *** | -0.002*** |
|  | (0.0002) | (0.0003) | (0.0003) | (0.0002) | (0.0002) |
| Seed (kg/hectare) (log) | 0.009*** | 0.005*** | 0.013*** | 0.005*** | 0.005*** |
|  | (0.001) | (0.001) | (0.001) | (0.001) | (0.001) |
| Agricultural tools (log) | -0.000 | 0.001*** | -0.001*** | 0.0002** | -0.0004** |
|  | (0.0002) | (0.0002) | (0.0002) | (0.0001) | (0.0002) |
| Mill's ratio | -0.037*** | 0.0001 | -0.009*** | 0.049*** | -0.025*** |
|  | (0.001) | (0.001) | (0.001) | (0.0001) | (0.001) |
| B2. Men's Structural Advantage |  |  |  |  |  |
| Age (years) | -0.001 | -0.156*** | 0.145*** | 0.029 | 0.030** |
|  | (0.015) | (0.015) | (0.016) | (0.021) | (0.014) |
| Age squared | 0.003 | 0.062*** | -0.088*** | -0.052*** | -0.019*** |
|  | (0.008) | (0.007) | (0.009) | (0.011) | (0.008) |
| Education (years) | 0.003 | -0.047*** | -0.020*** | 0.026*** | 0.001 |
|  | (0.002) | (0.002) | (0.002) | (0.002) | (0.002) |
| Married | 0.059*** | -0.005** | -0.014*** | -0.012*** | 0.058*** |
|  | (0.003) | (0.003) | (0.003) | (0.004) | (0.002) |
| Household size | 0.027*** | 0.022*** | -0.012*** | 0.024*** | 0.024*** |
|  | (0.002) | (0.003) | (0.002) | (0.003) | (0.002) |
| Child-dependency ratio | 0.015*** | -0.003 | -0.008*** | $-0.011^{* * *}$ | 0.005** |
|  | (0.002) | (0.002) | (0.002) | (0.003) | (0.002) |
| Livestock | 0.001 | 0.009*** | -0.008*** | 0.018*** | -0.0003 |
|  | (0.002) | (0.002) | (0.001) | (0.003) | (0.001) |
| Plot size | -0.061*** | -0.041 ${ }^{* * *}$ | 0.004 | 0.171*** | -0.082*** |
|  | (0.004) | (0.004) | (0.004) | (0.007) | (0.004) |
| Maincropping | -5.860*** | 0.072 | -0.057 | -4.930*** | -5.799*** |
|  | (0.459) | (0.395) | (0.423) | (0.341) | (0.419) |
| Plot distance to home | 0.001 | -0.009*** | $0.011^{* * *}$ | 0.002 | 0.003*** |
|  | (0.001) | (0.002) | (0.002) | (0.002) | (0.001) |
| Cost of irrigation (log) | -0.275*** | -0.007 | -0.077*** | -0.061*** | -0.095*** |
|  | (0.015) | (0.018) | (0.016) | (0.022) | (0.018) |

Table A6 continued
I) Sahel

|  | Plot headship |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Plot head | Plot de jure head | Plot migrant head | Plot manager | Plot owner |
| Adult laboring men in family | $0.011^{* * *}$ | $0.039^{* * *}$ | 0.034*** | $-0.015^{* * *}$ | -0.018*** |
|  | (0.003) | (0.003) | (0.003) | (0.005) | (0.003) |
| Adult laboring women in | -0.055*** | -0.037*** | $-0.021^{* * *}$ | 0.040*** | -0.006** |
| family | (0.003) | (0.003) | (0.003) | (0.004) | (0.003) |
| Child laborers in family | 0.042*** | 0.029*** | -0.015*** | -0.061*** | 0.015*** |
|  | (0.002) | (0.002) | (0.003) | (0.003) | (0.002) |
| Hired men | -0.030*** | 0.006*** | -0.005** | 0.037*** | -0.033*** |
|  | (0.002) | (0.002) | (0.002) | (0.004) | (0.002) |
| Hired women | -0.019*** | -0.015*** | -0.029*** | 0.014*** | -0.005** |
|  | (0.002) | (0.002) | (0.002) | (0.002) | (0.002) |
| Hired child labor | 0.021*** | 0.013*** | 0.038*** | -0.043*** | 0.031*** |
|  | (0.002) | (0.002) | (0.002) | (0.004) | (0.002) |
| Fertilizer (kg/hectare) (log) | 0.037*** | 0.036*** | 0.227*** | 0.089*** | 0.023*** |
|  | (0.008) | (0.009) | (0.010) | (0.015) | (0.009) |
| Herbicide (kg/hectare) (log) | $-0.016^{* * *}$ | 0.006*** | -0.003 | $0.012^{* * *}$ | -0.0004 |
|  | (0.002) | (0.002) | (0.002) | (0.002) | (0.001) |
| Seed (kg/hectare) (log) | 0.031*** | -0.105*** | -0.029*** | -0.027 | -0.086*** |
|  | (0.009) | (0.009) | (0.010) | (0.018) | (0.011) |
| Agricultural tools (log) | -0.027*** | $0.021^{* * *}$ | 0.043*** | -0.027*** | 0.015*** |
|  | (0.006) | (0.007) | (0.008) | (0.011) | (0.007) |
| Mill's ratio | -0.373*** | 0.028 | 0.083*** | 0.214*** | $-0.331^{* * *}$ |
|  | (0.023) | (0.022) | (0.024) | (0.032) | (0.025) |
| B3. Women's Structural Disadvantage |  |  |  |  |  |
| Age (years) | 0.062*** | -0.012 | 0.296*** | 0.051*** | 0.155*** |
|  | (0.021) | (0.025) | (0.023) | (0.019) | (0.020) |
| Age squared | 0.077*** | -0.004 | -0.156*** | -0.011 | -0.021** |
|  | (0.011) | (0.014) | (0.012) | (0.009) | (0.011) |
| Education (years) | $-0.031^{* * *}$ | -0.067*** | -0.018*** | 0.012*** | -0.026*** |
|  | (0.003) | (0.003) | (0.003) | (0.002) | (0.003) |
| Married | 0.029*** | -0.062*** | $-0.031^{* * *}$ | -0.047*** | 0.021*** |
|  | (0.004) | (0.006) | (0.005) | (0.003) | (0.004) |
| Household size | 0.015*** | 0.007** | -0.023*** | -0.008** | 0.033*** |
|  | (0.005) | (0.004) | (0.004) | (0.003) | (0.005) |
| Child-dependency ratio | 0.030*** | -0.008** | -0.017*** | -0.002 | -0.001 |
|  | (0.004) | (0.004) | (0.004) | (0.002) | (0.003) |
| Livestock | -0.0003 | 0.009*** | -0.018*** | 0.019*** | -0.001 |
|  | (0.004) | (0.003) | (0.003) | (0.001) | (0.003) |
| Plot size | -0.117*** | -0.044*** | 0.012*** | 0.095*** | -0.090*** |
|  | (0.009) | (0.007) | (0.007) | (0.005) | (0.008) |
| Maincropping | 5.403*** | 5.866*** | 0.103 | 6.284*** | -0.573 |
|  | (0.378) | (0.392) | (0.382) | (0.454) | (0.404) |
| Plot distance to home | 0.009*** | -0.005** | $0.016^{* * *}$ | -0.006*** | 0.002 |
|  | (0.003) | (0.003) | (0.003) | (0.001) | (0.003) |

Table A6 continued
I) Sahel

|  | Plot headship |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :---: | :---: | :---: |
|  | Plot head | Plot de jure <br> head | Plot migrant <br> head | Plot <br> manager | Plot owner |  |  |  |
| Cost of irrigation (log) | $-0.372^{* * *}$ | $0.060^{* *}$ | $-0.328^{* * *}$ | 0.019 | $0.041^{* *}$ |  |  |  |
| Adult laboring men in family | $(0.026)$ | $-0.015^{* * *}$ | $(0.030)$ | $\left(0.122^{* * *}\right.$ | $0.023)$ |  |  |  |

## II) Western Highlands

|  | Plot headship |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Plot head | Plot de jure head | Plot migrant head | Plot manager | Plot owner |
| A. Aggregate decomposition |  |  |  |  |  |
| Gender disparities | $\begin{aligned} & 0.042^{* * *} \\ & (0.006) \end{aligned}$ | $\begin{aligned} & -0.038^{* * *} \\ & (0.006) \end{aligned}$ | $\begin{aligned} & 0.026^{* * *} \\ & (0.005) \end{aligned}$ | $\begin{aligned} & -0.051^{* * *} \\ & (0.004) \end{aligned}$ | $\begin{aligned} & 0.012^{* * *} \\ & (0.006) \end{aligned}$ |
| Endowment effect | $\begin{aligned} & -0.030^{* * *} \\ & (0.004) \end{aligned}$ | $\begin{aligned} & -0.029^{* * *} \\ & (0.003) \end{aligned}$ | $\begin{aligned} & -0.017^{* * *} \\ & (0.003) \end{aligned}$ | $\begin{aligned} & 0.037 * * * \\ & (0.003) \end{aligned}$ | $\begin{aligned} & -0.036^{* * *} \\ & (0.003) \end{aligned}$ |
| Share of gender disparities | -71.4\% | 76.3\% | -65.4\% | -72.5\% | -300.0\% |
| Men's structural advantage | $\begin{aligned} & 0.034^{* * *} \\ & (0.002) \end{aligned}$ | $\begin{aligned} & -0.006 * * * \\ & (0.002) \end{aligned}$ | $\begin{aligned} & 0.020 * * * \\ & (0.002) \end{aligned}$ | $\begin{aligned} & -0.046^{* * *} \\ & (0.002) \end{aligned}$ | $\begin{aligned} & 0.023^{* * *} \\ & (0.002) \end{aligned}$ |
| Share of gender disparities | 81.0\% | 15.8\% | 76.9\% | 90.2\% | 191.7\% |
| Women's structural disadvantage | $\begin{aligned} & 0.0378^{* * *} \\ & (0.003) \end{aligned}$ | $\begin{aligned} & -0.003 \\ & (0.003) \end{aligned}$ | $\begin{aligned} & 0.023^{* * *} \\ & (0.002) \end{aligned}$ | $\begin{aligned} & -0.042^{* * *} \\ & (0.002) \end{aligned}$ | $\begin{aligned} & 0.025^{* * *} \\ & (0.003) \end{aligned}$ |
| Share of gender disparities | 90.5\% | 7.9\% | 88.5\% | 82.4\% | 208.3\% |
| Number observations | 1,126 | 1,126 | 1,126 | 1,126 | 1,126 |


|  | Plot head | Plot de jure head | Plot migrant head | Plot manager | Plot owner |
| :---: | :---: | :---: | :---: | :---: | :---: |
| B. Detailed decomposition <br> B1. Endowment effect |  |  |  |  |  |
|  |  |  |  |  |  |
| Age (years) | $\begin{aligned} & 0.026^{* * *} \\ & (0.002) \end{aligned}$ | $\begin{aligned} & 0.006 * * * \\ & (0.001) \end{aligned}$ | $\begin{aligned} & 0.015^{* * *} \\ & (0.001) \end{aligned}$ | $\begin{aligned} & -0.005^{* * *} \\ & (0.001) \end{aligned}$ | $\begin{aligned} & 0.014^{* * *} \\ & (0.001) \end{aligned}$ |
| Age squared | -0.023*** | -0.002*** | -0.012*** | 0.005*** | -0.012*** |
|  | (0.002) | (0.001) | (0.001) | (0.001) | (0.001) |
| Education (years) | 0.0003 | -0.0003 | -0.001*** | -0.002*** | 0.001** |
|  | (0.0002) | (0.0002) | (0.0002) | (0.0004) | (0.0003) |
| Married | 0.0003 | -0.0003 | 0.0002 | -0.001*** | -0.0001 |
|  | (0.0002) | (0.0002) | (0.0002) | (0.0004) | (0.0002) |
| Household size | -0.003*** | -0.001*** | $0.001^{* * *}$ | 0.004*** | -0.006*** |
|  | (0.0003) | (0.0004) | (0.0004) | (0.0004) | (0.0004) |
| Child-dependency ratio | -0.0003 | 0.001 *** | -0.0001 | -0.000 | -0.001*** |
|  | (0.0002) | (0.0002) | (0.0002) | (0.0002) | (0.0002) |
| Livestock | -0.0003 | -0.0001 | 0.0001 | 0.0004** | -0.000 |
|  | (0.0002) | (0.0002) | (0.0001) | (0.0002) | (0.0001) |
| Plot size | 0.013*** | 0.007*** | $0.012^{* * *}$ | 0.001*** | $0.015^{* * *}$ |
|  | (0.001) | (0.001) | (0.001) | (0.0002) | (0.001) |
| Maincropping | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
|  | (0.170) | (0.031) | (0.097) | (0.056) | (0.141) |
| Plot distance to home | 0.001*** | $-0.0002^{* *}$ | 0.0002** | -0.001*** | 0.001*** |
|  | (0.0001) | (0.0001) | (0.0001) | (0.0002) | (0.0002) |
| Cost of irrigation (log) | 0.0002 | 0.001*** | -0.001*** | 0.0001 | 0.001*** |
|  | (0.0002) | (0.0002) | (0.0002) | (0.0002) | (0.0002) |
| Adult laboring men in | 0.001*** | 0.0002 | 0.001*** | -0.001*** | 0.001** |
| family | (0.0002) | (0.0002) | (0.0003) | (0.0003) | (0.0003) |
| Adult laboring women in | -0.001*** | 0.0003 | $0.003^{* * *}$ | 0.003*** | $-0.002^{* * *}$ |
| family | (0.0002) | (0.0003) | (0.0003) | (0.0003) | (0.0003) |
| Child laborers in family | $-0.005^{* * *}$ | $0.001^{* * *}$ | $-0.003^{* * *}$ | $-0.001^{* * *}$ | $-0.004^{* * *}$ |
| Hired men | $0.001 * *$ | $0.003^{* *}$ | 0.0002 | $0.007^{* *}$ | -0.003*** |
|  | (0.0003) | (0.0004) | (0.0003) | (0.001) | (0.0003) |
| Hired women | 0.001*** | -0.0002 | 0.001*** | -0.001*** | 0.001*** |
|  | (0.0002) | (0.0002) | (0.0002) | (0.0002) | (0.0002) |
| Hired child labor | 0.000 | 0.0001 | -0.0001 | 0.0001 | -0.000 |
|  | (0.0001) | (0.0002) | (0.0002) | (0.0002) | (0.0002) |
| Fertilizer (kg/hectare) (log) | 0.001*** | $0.001 * * *$ | 0.001*** | 0.0002 | 0.001** |
|  | (0.0002) | (0.0002) | (0.0003) | (0.0002) | (0.0003) |
| Herbicide (kg/hectare) (log) | 0.001*** | -0.001*** | -0.001 | 0.0002 | 0.001*** |
|  | (0.0002) | (0.0001) | (0.0002) | (0.0002) | (0.0002) |
| Seed (kg/hectare) (log) | 0.000 | -0.002*** | -0.007*** | 0.0001 | 0.003*** |
|  | (0.0004) | (0.001) | (0.001) | (0.0001) | (0.001) |
| Agricultural tools (log) | 0.004*** | 0.001*** | 0.003*** | 0.001*** | 0.003*** |
|  | (0.0003) | (0.0002) | (0.0003) | (0.0002) | (0.0003) |
| Mill's ratio | 0.027*** | $0.021^{* * *}$ (0) | $0.014^{* * *}$ (0.001) | $-0.016^{* * *}$ $(0.001)$ | $0.018^{* * *}$ $(0.001)$ |
|  | (0.002) | (0.002) | (0.001) | (0.001) | (0.001) |


|  | Plot heads |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Plot head | Plot de jure head | Plot migrant head | Plot manager | Plot owner |
| B2. Men's Structural Advant |  |  |  |  |  |
| Age (years) | $\begin{aligned} & -0.250^{* * *} \\ & (0.021) \end{aligned}$ | $\begin{aligned} & -0.220^{* * *} \\ & (0.016) \end{aligned}$ | $\begin{aligned} & -0.201^{* * *} \\ & (0.020) \end{aligned}$ | $\begin{aligned} & -0.194^{* * *} \\ & (0.016) \end{aligned}$ | $\begin{aligned} & -0.003 \\ & (0.016) \end{aligned}$ |
| Age squared | $\begin{aligned} & 0.128^{* * *} \\ & (0.012) \end{aligned}$ | $\begin{aligned} & 0.087^{* * *} \\ & (0.009) \end{aligned}$ | $\begin{aligned} & 0.110^{* * *} \\ & (0.011) \end{aligned}$ | $\begin{aligned} & 0.092^{* * *} \\ & (0.010) \end{aligned}$ | $\begin{aligned} & 0.003 \\ & (0.009) \end{aligned}$ |
| Education (years) | $\begin{aligned} & -0.018^{* * *} \\ & (0.003) \end{aligned}$ | $\begin{aligned} & 0.004 \\ & (0.003) \end{aligned}$ | $\begin{aligned} & -0.020^{* * *} \\ & (0.002) \end{aligned}$ | $\begin{aligned} & -0.005^{* *} \\ & (0.003) \end{aligned}$ | $\begin{aligned} & -0.017^{* * *} \\ & (0.003) \end{aligned}$ |
| Married | $\begin{aligned} & -0.007^{* * *} \\ & (0.003) \end{aligned}$ | $\begin{aligned} & -0.009 * * * \\ & (0.003) \end{aligned}$ | $\begin{aligned} & -0.002 \\ & (0.003) \end{aligned}$ | $\begin{aligned} & 0.007^{* *} \\ & (0.004) \end{aligned}$ | $\begin{aligned} & -0.012^{* * *} \\ & (0.003) \end{aligned}$ |
| Household size | $\begin{aligned} & 0.011^{* * *} \\ & (0.002) \end{aligned}$ | $\begin{aligned} & 0.005^{* *} \\ & (0.003) \end{aligned}$ | $\begin{aligned} & 0.015^{* * *} \\ & (0.002) \end{aligned}$ | $\begin{aligned} & 0.005 \\ & (0.003) \end{aligned}$ | $\begin{aligned} & 0.009^{* * *} \\ & (0.003) \end{aligned}$ |
| Child-dependency ratio | $\begin{aligned} & 0.009^{* * *} \\ & (0.002) \end{aligned}$ | $\begin{aligned} & 0.022^{* * *} \\ & (0.003) \end{aligned}$ | $\begin{aligned} & 0.009^{* * *} \\ & (0.002) \end{aligned}$ | $\begin{aligned} & -0.010^{* * *} \\ & (0.003) \end{aligned}$ | $\begin{aligned} & 0.013^{* * *} \\ & (0.002) \end{aligned}$ |
| Livestock | $\begin{aligned} & 0.037^{* * *} \\ & (0.002) \end{aligned}$ | $\begin{aligned} & 0.007^{* * *} \\ & (0.002) \end{aligned}$ | $\begin{aligned} & 0.007^{* *} \\ & (0.002) \end{aligned}$ | $\begin{aligned} & 0.010^{* * *} \\ & (0.002) \end{aligned}$ | $\begin{aligned} & 0.041 * * \\ & (0.002) \end{aligned}$ |
| Plot size | $\begin{aligned} & 0.052^{* * *} \\ & (0.006) \end{aligned}$ | $\begin{aligned} & 0.009^{* *} \\ & (0.006) \end{aligned}$ | $\begin{aligned} & 0.030^{* * *} \\ & (0.006) \end{aligned}$ | $\begin{aligned} & 0.030^{* * *} \\ & (0.006) \end{aligned}$ | $\begin{aligned} & 0.047^{* * *} \\ & (0.006) \end{aligned}$ |
| Maincropping | $\begin{aligned} & 0.000 \\ & (0.152) \end{aligned}$ | $\begin{aligned} & 3.880^{* * *} \\ & (0.259) \end{aligned}$ | $\begin{aligned} & 3.036^{* * *} \\ & (0.215) \end{aligned}$ | $\begin{aligned} & 0.000 \\ & (0.278) \end{aligned}$ | $\begin{aligned} & 2.670^{* * *} \\ & (0.179) \end{aligned}$ |
| Plot distance to home | $\begin{aligned} & -0.010^{* * *} \\ & (0.002) \end{aligned}$ | $\begin{aligned} & 0.019^{* * *} \\ & (0.002) \end{aligned}$ | $\begin{aligned} & 0.001 \\ & (0.002) \end{aligned}$ | $\begin{aligned} & 0.020^{* * *} \\ & (0.002) \end{aligned}$ | $\begin{aligned} & 0.003 \\ & (0.002) \end{aligned}$ |
| Cost of irrigation (log) | $\begin{aligned} & -0.052^{* * *} \\ & (0.017) \end{aligned}$ | $\begin{aligned} & 0.052^{* * *} \\ & (0.019) \end{aligned}$ | $\begin{aligned} & -0.240^{* * *} \\ & (0.016) \end{aligned}$ | $\begin{aligned} & -0.128^{* * *} \\ & (0.021) \end{aligned}$ | $\begin{aligned} & -0.139 * * * \\ & (0.017) \end{aligned}$ |
| Adult laboring men in family | $\begin{aligned} & 0.024^{* * *} \\ & (0.004) \end{aligned}$ | $\begin{aligned} & -0.026^{* * *} \\ & (0.003) \end{aligned}$ | $\begin{aligned} & -0.008^{* *} \\ & (0.004) \end{aligned}$ | $\begin{aligned} & 0.012^{* * *} \\ & (0.004) \end{aligned}$ | $\begin{aligned} & 0.067^{* * *} \\ & (0.003) \end{aligned}$ |
| Adult laboring women in family | $\begin{aligned} & 0.0001 \\ & (0.003) \end{aligned}$ | $\begin{aligned} & 0.021^{* * *} \\ & (0.002) \end{aligned}$ | $\begin{aligned} & 0.040^{* * *} \\ & (0.003) \end{aligned}$ | $\begin{aligned} & 0.011^{* * *} \\ & (0.003) \end{aligned}$ | $\begin{aligned} & -0.028^{* * *} \\ & (0.003) \end{aligned}$ |
| Child laborers in family | $\begin{aligned} & -0.033^{* * *} \\ & (0.002) \end{aligned}$ | $\begin{aligned} & 0.016^{* * *} \\ & (0.002) \end{aligned}$ | $\begin{aligned} & -0.019^{* * *} \\ & (0.002) \end{aligned}$ | $\begin{aligned} & 0.015^{* * *} \\ & (0.003) \end{aligned}$ | $\begin{aligned} & -0.048^{* * *} \\ & (0.002) \end{aligned}$ |
| Hired men | $\begin{aligned} & 0.009^{* * *} \\ & (0.002) \end{aligned}$ | $\begin{aligned} & 0.004^{* *} \\ & (0.002) \end{aligned}$ | $\begin{aligned} & -0.009^{* * *} \\ & (0.002) \end{aligned}$ | $\begin{aligned} & -0.017^{* * *} \\ & (0.003) \end{aligned}$ | $\begin{aligned} & -0.013^{* * *} \\ & (0.002) \end{aligned}$ |
| Hired women | $\begin{aligned} & 0.028^{* * *} \\ & (0.002) \end{aligned}$ | $\begin{aligned} & 0.020^{* * *} \\ & (0.002) \end{aligned}$ | $\begin{aligned} & 0.026^{* * *} \\ & (0.002) \end{aligned}$ | $\begin{aligned} & 0.011^{* * *} \\ & (0.002) \end{aligned}$ | $\begin{aligned} & 0.045^{* *} \\ & (0.002) \end{aligned}$ |
| Hired child labor | $\begin{aligned} & 0.036^{* * *} \\ & (0.003) \end{aligned}$ | $\begin{aligned} & -0.010^{* * *} \\ & (0.003) \end{aligned}$ | $\begin{aligned} & 0.053^{* * *} \\ & (0.003) \end{aligned}$ | $\begin{aligned} & -0.014^{* * *} \\ & (0.004) \end{aligned}$ | $\begin{aligned} & 0.031 * * * \\ & (0.003) \end{aligned}$ |
| Fertilizer (kg/hectare) (log) | $\begin{aligned} & 0.247^{* * *} \\ & (0.013) \end{aligned}$ | $\begin{aligned} & -0.073^{* * *} \\ & (0.012) \end{aligned}$ | $\begin{aligned} & 0.069^{* * *} \\ & (0.013) \end{aligned}$ | $\begin{aligned} & -0.088^{* * *} \\ & (0.013) \end{aligned}$ | $\begin{aligned} & 0.091 * * * \\ & (0.011) \end{aligned}$ |
| Herbicide (kg/hectare) (log) | $\begin{aligned} & 0.013^{* * *} \\ & (0.002) \end{aligned}$ | $\begin{aligned} & 0.061 * * * \\ & (0.003) \end{aligned}$ | $\begin{aligned} & 0.015^{* * *} \\ & (0.003) \end{aligned}$ | $\begin{aligned} & -0.029^{* * *} \\ & (0.003) \end{aligned}$ | $\begin{aligned} & 0.019^{* * *} \\ & (0.003) \end{aligned}$ |
| Seed (kg/hectare) (log) | $\begin{aligned} & -0.055^{* * *} \\ & (0.013) \end{aligned}$ | $\begin{aligned} & -0.146^{* * *} \\ & (0.013) \end{aligned}$ | $\begin{aligned} & -0.038^{* * *} \\ & (0.011) \end{aligned}$ | $\begin{aligned} & -0.009 \\ & (0.015) \end{aligned}$ | $\begin{aligned} & -0.046^{* * *} \\ & (0.013) \end{aligned}$ |
| Agricultural tools (log) | $\begin{aligned} & -0.007 \\ & (0.007) \end{aligned}$ | $\begin{aligned} & 0.011^{* * *} \\ & (0.007) \end{aligned}$ | $\begin{aligned} & -0.050^{* * *} \\ & (0.007) \end{aligned}$ | $\begin{aligned} & 0.041^{* * *} \\ & (0.009) \end{aligned}$ | $\begin{aligned} & -0.132^{* * *} \\ & (0.007) \end{aligned}$ |
| Mill's ratio | $\begin{aligned} & -0.156^{* * *} \\ & (0.034) \\ & \hline \end{aligned}$ | $\begin{aligned} & -0.012 \\ & (0.028) \end{aligned}$ | $\begin{aligned} & 0.307^{* * *} \\ & (0.030) \\ & \hline \end{aligned}$ | $\begin{aligned} & -0.223^{* * *} \\ & (0.038) \\ & \hline \end{aligned}$ | $\begin{aligned} & -0.119^{* * *} \\ & (0.035) \\ & \hline \end{aligned}$ |


|  | Plot heads |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Plot head | Plot de jure head | Plot migrant head | Plot manager | Plot owner |
| B3. Women's Structural Diso | dvantage |  |  |  |  |
| Age (years) | $\begin{aligned} & -0.238^{* * *} \\ & (0.021) \end{aligned}$ | $\begin{aligned} & -0.208^{* * *} \\ & (0.024) \end{aligned}$ | $\begin{aligned} & -0.212^{* * *} \\ & (0.022) \end{aligned}$ | $\begin{aligned} & -0.262^{* * *} \\ & (0.019) \end{aligned}$ | $\begin{aligned} & -0.032 \\ & (0.024) \end{aligned}$ |
| Age squared | $\begin{aligned} & 0.136^{* * *} \\ & (0.012) \end{aligned}$ | $\begin{aligned} & 0.065^{* * *} \\ & (0.013) \end{aligned}$ | $\begin{aligned} & 0.119 * * \\ & (0.013) \end{aligned}$ | $\begin{aligned} & 0.150^{* * *} \\ & (0.011) \end{aligned}$ | $\begin{aligned} & 0.026^{* *} \\ & (0.013) \end{aligned}$ |
| Education (years) | $\begin{aligned} & -0.044^{* * *} \\ & (0.004) \end{aligned}$ | $\begin{aligned} & -0.006 \\ & (0.004) \end{aligned}$ | $\begin{aligned} & -0.036^{* * *} \\ & (0.004) \end{aligned}$ | $\begin{aligned} & 0.001 \\ & (0.003) \end{aligned}$ | $\begin{aligned} & -0.031^{* * *} \\ & (0.004) \end{aligned}$ |
| Married | $\begin{aligned} & -0.005^{* *} \\ & (0.003) \end{aligned}$ | $\begin{aligned} & -0.014^{* * *} \\ & (0.003) \end{aligned}$ | $\begin{aligned} & -0.006 \\ & (0.004) \end{aligned}$ | $\begin{aligned} & 0.015^{* * *} \\ & (0.003) \end{aligned}$ | $\begin{aligned} & -0.004 \\ & (0.004) \end{aligned}$ |
| Household size | $\begin{aligned} & -0.003 \\ & (0.003) \end{aligned}$ | $\begin{aligned} & -0.017^{* * *} \\ & (0.004) \end{aligned}$ | $\begin{aligned} & 0.013^{* * *} \\ & (0.003) \end{aligned}$ | $\begin{aligned} & -0.016^{* * *} \\ & (0.003) \end{aligned}$ | $\begin{aligned} & -0.0004 \\ & (0.003) \end{aligned}$ |
| Child-dependency ratio | $\begin{aligned} & 0.006 \\ & (0.004) \end{aligned}$ | $\begin{aligned} & 0.018^{* * *} \\ & (0.004) \end{aligned}$ | $\begin{aligned} & 0.013^{* * *} \\ & (0.003) \end{aligned}$ | $\begin{aligned} & -0.022^{* * *} \\ & (0.003) \end{aligned}$ | $\begin{aligned} & 0.014^{* * *} \\ & (0.003) \end{aligned}$ |
| Livestock | $\begin{aligned} & 0.074^{* * *} \\ & (0.003) \end{aligned}$ | $\begin{aligned} & 0.0003 \\ & (0.003) \end{aligned}$ | $\begin{aligned} & 0.022^{* *} \\ & (0.003) \end{aligned}$ | $\begin{aligned} & 0.012^{* * *} \\ & (0.002) \end{aligned}$ | $\begin{aligned} & 0.070^{* * *} \\ & (0.002) \end{aligned}$ |
| Plot size | $\begin{aligned} & 0.073^{* * *} \\ & (0.007) \end{aligned}$ | $\begin{aligned} & -0.019^{* * *} \\ & (0.008) \end{aligned}$ | $\begin{aligned} & 0.054^{* * *} \\ & (0.008) \end{aligned}$ | $\begin{aligned} & 0.034^{* * *} \\ & (0.007) \end{aligned}$ | $\begin{aligned} & 0.074^{* * *} \\ & (0.008) \end{aligned}$ |
| Maincropping | $\begin{aligned} & -5.698^{* * *} \\ & (0.442) \end{aligned}$ | $\begin{aligned} & 0.000 \\ & (0.253) \end{aligned}$ | $\begin{aligned} & 0.000 \\ & (0.352) \end{aligned}$ | $\begin{aligned} & -3.057^{* * *} \\ & (0.227) \end{aligned}$ | $\begin{aligned} & -5.135^{* * *} \\ & (0.384) \end{aligned}$ |
| Plot distance to home | $\begin{aligned} & -0.010^{* * *} \\ & (0.002) \end{aligned}$ | $\begin{aligned} & 0.025^{* * *} \\ & (0.003) \end{aligned}$ | $\begin{aligned} & 0.009^{* * *} \\ & (0.002) \end{aligned}$ | $\begin{aligned} & 0.031 * * * \\ & (0.002) \end{aligned}$ | $\begin{aligned} & -0.003 \\ & (0.002) \end{aligned}$ |
| Cost of irrigation (log) | $\begin{aligned} & -0.126^{* * *} \\ & (0.024) \end{aligned}$ | $\begin{aligned} & 0.058^{* * *} \\ & (0.027) \end{aligned}$ | $\begin{aligned} & -0.273^{* * *} \\ & (0.023) \end{aligned}$ | $\begin{aligned} & -0.097^{* * *} \\ & (0.021) \end{aligned}$ | $\begin{aligned} & -0.246^{* * *} \\ & (0.026) \end{aligned}$ |
| Adult laboring men in family | $\begin{aligned} & 0.011^{* * *} \\ & (0.005) \end{aligned}$ | $\begin{aligned} & -0.025^{* * *} \\ & (0.005) \end{aligned}$ | $\begin{aligned} & -0.006 \\ & (0.005) \end{aligned}$ | $\begin{aligned} & 0.015^{* * *} \\ & (0.004) \end{aligned}$ | $\begin{aligned} & 0.088^{* * *} \\ & (0.005) \end{aligned}$ |
| Adult laboring women in family | $\begin{aligned} & 0.007^{* * *} \\ & (0.003) \end{aligned}$ | $\begin{aligned} & 0.018^{* * *} \\ & (0.003) \end{aligned}$ | $\begin{aligned} & 0.040^{* * *} \\ & (0.003) \end{aligned}$ | $\begin{aligned} & 0.020^{* * *} \\ & (0.003) \end{aligned}$ | $\begin{aligned} & -0.019^{* * *} \\ & (0.004) \end{aligned}$ |
| Child laborers in family | $\begin{aligned} & -0.036^{* * *} \\ & (0.003) \end{aligned}$ | $\begin{aligned} & 0.014^{* * *} \\ & (0.003) \end{aligned}$ | $\begin{aligned} & -0.015^{* * *} \\ & (0.003) \end{aligned}$ | $\begin{aligned} & 0.013^{* * *} \\ & (0.002) \end{aligned}$ | $\begin{aligned} & -0.061^{* * *} \\ & (0.003) \end{aligned}$ |
| Hired men | $\begin{aligned} & 0.018^{* * *} \\ & (0.003) \end{aligned}$ | $\begin{aligned} & -0.002 \\ & (0.003) \end{aligned}$ | $\begin{aligned} & -0.013^{* * *} \\ & (0.002) \end{aligned}$ | $\begin{aligned} & -0.022^{* * *} \\ & (0.002) \end{aligned}$ | $\begin{aligned} & -0.019^{* * *} \\ & (0.003) \end{aligned}$ |
| Hired women | $\begin{aligned} & 0.025^{* * *} \\ & (0.002) \end{aligned}$ | $\begin{aligned} & 0.040^{* * *} \\ & (0.003) \end{aligned}$ | $\begin{aligned} & 0.028^{* * *} \\ & (0.003) \end{aligned}$ | $\begin{aligned} & 0.012^{* * *} \\ & (0.002) \end{aligned}$ | $\begin{aligned} & 0.037^{* * *} \\ & (0.003) \end{aligned}$ |
| Hired child labor | $\begin{aligned} & 0.047^{* * *} \\ & (0.004) \end{aligned}$ | $\begin{aligned} & 0.003 \\ & (0.003) \end{aligned}$ | $\begin{aligned} & 0.070 * * * \\ & (0.004) \end{aligned}$ | $\begin{aligned} & -0.009^{* * *} \\ & (0.002) \end{aligned}$ | $\begin{aligned} & 0.026^{* * *} \\ & (0.004) \end{aligned}$ |
| Fertilizer (kg/hectare) (log) | $\begin{aligned} & 0.242^{* * *} \\ & (0.013) \end{aligned}$ | $\begin{aligned} & -0.082^{* * *} \\ & (0.015) \end{aligned}$ | $\begin{aligned} & 0.112^{* * *} \\ & (0.018) \end{aligned}$ | $\begin{aligned} & -0.070^{* * *} \\ & (0.012) \end{aligned}$ | $\begin{aligned} & 0.125^{* * *} \\ & (0.015) \end{aligned}$ |
| Herbicide (kg/hectare) (log) | $\begin{aligned} & 0.021^{* * *} \\ & (0.004) \end{aligned}$ | $\begin{aligned} & 0.057^{* *} \\ & (0.003) \end{aligned}$ | $\begin{aligned} & 0.017^{* *} \\ & (0.004) \end{aligned}$ | $\begin{aligned} & -0.025^{* * *} \\ & (0.003) \end{aligned}$ | $\begin{aligned} & 0.019^{* * *} \\ & (0.004) \end{aligned}$ |
| Seed (kg/hectare) (log) | $\begin{aligned} & 0.040^{* * *} \\ & (0.017) \end{aligned}$ | $\begin{aligned} & -0.127^{* * *} \\ & (0.019) \end{aligned}$ | $\begin{aligned} & 0.0001 \\ & (0.016) \end{aligned}$ | $\begin{aligned} & -0.010 \\ & (0.015) \end{aligned}$ | $\begin{aligned} & -0.011 \\ & (0.017) \end{aligned}$ |
| Agricultural tools (log) | $\begin{aligned} & 0.018^{* *} \\ & (0.010) \end{aligned}$ | $\begin{aligned} & 0.077^{* * *} \\ & (0.011) \end{aligned}$ | $\begin{aligned} & -0.024^{* * *} \\ & (0.009) \end{aligned}$ | $\begin{aligned} & 0.053^{* * *} \\ & (0.008) \end{aligned}$ | $\begin{aligned} & -0.164^{* * *} \\ & (0.010) \end{aligned}$ |
| Mill's ratio | $\begin{aligned} & -0.347^{* * *} \\ & (0.035) \\ & \hline \end{aligned}$ | $\begin{aligned} & 0.210^{* * *} \\ & (0.038) \\ & \hline \end{aligned}$ | $\begin{aligned} & 0.431^{* * *} \\ & (0.037) \\ & \hline \end{aligned}$ | $\begin{aligned} & -0.268^{* * *} \\ & (0.036) \\ & \hline \end{aligned}$ | $\begin{aligned} & -0.421^{* * *} \\ & (0.044) \\ & \hline \end{aligned}$ |

Table A6 continued
III) Bimodal Rainfall Humid Forest

|  | Plot headship |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Plot head | Plot de jure head | Plot migrant head | Plot manager | Plot owner |
| A. Aggregate decomposition |  |  |  |  |  |
| Gender disparities | $\begin{aligned} & -0.079^{* * *} \\ & (0.014) \end{aligned}$ | $\begin{aligned} & -0.043^{* * *} \\ & (0.015) \end{aligned}$ | $\begin{aligned} & -0.206^{* * *} \\ & (0.017) \end{aligned}$ | $\begin{aligned} & 0.065^{* * *} \\ & (0.017) \end{aligned}$ | $\begin{aligned} & -0.042^{* * *} \\ & (0.016) \end{aligned}$ |
| Endowment effect | $\begin{aligned} & -0.024^{* * *} \\ & (0.011) \end{aligned}$ | $\begin{aligned} & -0.057^{* * *} \\ & (0.010) \end{aligned}$ | $\begin{aligned} & -0.014 \\ & (0.012) \end{aligned}$ | $\begin{aligned} & 0.034^{* * *} \\ & (0.009) \end{aligned}$ | $\begin{aligned} & -0.022^{* *} \\ & (0.010) \end{aligned}$ |
| Share of gender disparities | 30.4\% | 132.6\% | 6.8\% | 52.3\% | 52.4\% |
| Men's structural | -0.015*** | 0.010 | -0.075*** | -0.008 | -0.028*** |
| advantage | (0.005) | (0.006) | (0.005) | (0.005) | (0.006) |
| Share of gender disparities | 19.0\% | -23.3\% | 36.4\% | -12.3\% | 66.7\% |
| Women's structural | -0.040*** | 0.004 | -0.117*** | 0.039*** | 0.008 |
| disadvantage Share of gender disparities | (0.006) $50.6 \%$ | (0.008) $-9.3 \%$ | (0.010) $56.8 \%$ | (0.010) 60.0\% | (0.007) $-19.0 \%$ |
| Number observations | 186 | 186 | 186 | 186 | 186 |
| B. Detailed decomposition <br> B1. Endowment effect |  |  |  |  |  |
| Age (years) | $\begin{aligned} & -0.039 * * * \\ & (0.011) \end{aligned}$ | $\begin{aligned} & 0.026^{* * *} \\ & (0.010) \end{aligned}$ | $\begin{aligned} & -0.007 \\ & (0.005) \end{aligned}$ | $\begin{aligned} & -0.031^{* * *} \\ & (0.010) \end{aligned}$ | $\begin{aligned} & -0.022^{* * *} \\ & (0.008) \end{aligned}$ |
| Age squared | $\begin{aligned} & 0.044^{* * *} \\ & (0.012) \end{aligned}$ | $\begin{aligned} & -0.027^{* * *} \\ & (0.009) \end{aligned}$ | $\begin{aligned} & 0.009 \\ & (0.005) \end{aligned}$ | $\begin{aligned} & 0.023^{* * *} \\ & (0.008) \end{aligned}$ | $\begin{aligned} & 0.025^{* * *} \\ & (0.009) \end{aligned}$ |
| Education (years) | $\begin{aligned} & -0.011^{* * *} \\ & (0.003) \end{aligned}$ | $\begin{aligned} & -0.028^{* * *} \\ & (0.003) \end{aligned}$ | $\begin{aligned} & 0.002 \\ & (0.003) \end{aligned}$ | $\begin{aligned} & 0.002 \\ & (0.003) \end{aligned}$ | $\begin{aligned} & -0.016^{* * *} \\ & (0.003) \end{aligned}$ |
| Married | $\begin{aligned} & 0.009 * * * \\ & (0.002) \end{aligned}$ | $\begin{aligned} & 0.016^{* * *} \\ & (0.003) \end{aligned}$ | $\begin{aligned} & -0.002^{* *} \\ & (0.001) \end{aligned}$ | $\begin{aligned} & -0.006^{* * *} \\ & (0.002) \end{aligned}$ | $\begin{aligned} & 0.005^{* *} \\ & (0.001) \end{aligned}$ |
| Household size | $\begin{aligned} & 0.008^{* * *} \\ & (0.003) \end{aligned}$ | $\begin{aligned} & -0.003 \\ & (0.003) \end{aligned}$ | $\begin{aligned} & 0.019 * * * \\ & (0.003) \end{aligned}$ | $\begin{aligned} & -0.025^{* * *} \\ & (0.003) \end{aligned}$ | $\begin{aligned} & 0.001 \\ & (0.003) \end{aligned}$ |
| Child-dependency ratio | $\begin{aligned} & -0.012^{* * *} \\ & (0.002) \end{aligned}$ | $\begin{aligned} & -0.004^{* *} \\ & (0.002) \end{aligned}$ | $\begin{aligned} & -0.041^{* * *} \\ & (0.004) \end{aligned}$ | $\begin{aligned} & 0.043^{* * *} \\ & (0.004) \end{aligned}$ | $\begin{aligned} & -0.018^{* * *} \\ & (0.03) \end{aligned}$ |
| Livestock | $\begin{aligned} & -0.002^{* *} \\ & (0.001) \end{aligned}$ | $\begin{aligned} & 0.0002 \\ & (0.001) \end{aligned}$ | $\begin{aligned} & 0.005^{* * *} \\ & (0.002) \end{aligned}$ | $\begin{aligned} & -0.005^{* * *} \\ & (0.002) \end{aligned}$ | $\begin{aligned} & 0.004^{* * *} \\ & (0.001) \end{aligned}$ |
| Plot size | $\begin{aligned} & -0.003 \\ & (0.002) \end{aligned}$ | $\begin{aligned} & -0.001 \\ & (0.001) \end{aligned}$ | $\begin{aligned} & -0.004^{* *} \\ & (0.002) \end{aligned}$ | $\begin{aligned} & -0.008^{* * *} \\ & (0.002) \end{aligned}$ | $\begin{aligned} & -0.002 \\ & (0.002) \end{aligned}$ |
| Maincropping | $\begin{aligned} & -6.158^{* * *} \\ & (0.311) \end{aligned}$ | $\begin{aligned} & -1.876^{* * *} \\ & (0.086) \end{aligned}$ | $\begin{aligned} & -3.164^{* * *} \\ & (0.174) \end{aligned}$ | $\begin{aligned} & 1.090^{* * *} \\ & (0.070) \end{aligned}$ | $\begin{aligned} & -4.282^{* * *} \\ & (0.218) \end{aligned}$ |
| Plot distance to home | $\begin{aligned} & 0.012^{* * *} \\ & (0.001) \end{aligned}$ | $\begin{aligned} & 0.006 * * \\ & (0.001) \end{aligned}$ | $\begin{aligned} & 0.012^{* * *} \\ & (0.001) \end{aligned}$ | $\begin{aligned} & -0.002^{* *} \\ & (0.001) \end{aligned}$ | $\begin{aligned} & 0.013^{* * *} \\ & (0.001) \end{aligned}$ |
| Cost of irrigation (log) | $\begin{aligned} & 0.003^{* * *} \\ & (0.001) \end{aligned}$ | $\begin{aligned} & 0.007^{* * *} \\ & (0.001) \end{aligned}$ | $\begin{aligned} & 0.002^{* *} \\ & (0.001) \end{aligned}$ | $\begin{aligned} & -0.001 \\ & (0.001) \end{aligned}$ | $\begin{aligned} & 0.007^{* * *} \\ & (0.001) \end{aligned}$ |
| Adult laboring men in family | $\begin{aligned} & -0.041^{* * *} \\ & (0.003) \end{aligned}$ | $\begin{aligned} & -0.058^{* * *} \\ & (0.003) \end{aligned}$ | $\begin{aligned} & -0.038^{* * *} \\ & (0.003) \end{aligned}$ | $\begin{aligned} & -0.010^{* * *} \\ & (0.003) \end{aligned}$ | $\begin{aligned} & -0.031^{* * *} \\ & (0.003) \end{aligned}$ |
| Adult laboring women in | 0.045*** | $0.041^{* * *}$ | $0.015^{* * *}$ | -0.033*** | $0.042^{* *}$ |
| family | (0.003) | (0.003) | (0.002) | (0.003) | (0.003) |
| Child laborers in family | $\begin{aligned} & -0.015^{* * *} \\ & (0.004) \end{aligned}$ | $\begin{aligned} & -0.027^{* * *} \\ & (0.004) \end{aligned}$ | $\begin{aligned} & -0.030^{* * *} \\ & (0.004) \end{aligned}$ | $\begin{aligned} & 0.011^{* * *} \\ & (0.004) \end{aligned}$ | $\begin{aligned} & 0.021^{* * *} \\ & (0.004) \end{aligned}$ |
| Hired men | $\begin{aligned} & 0.013^{* * *} \\ & (0.002) \end{aligned}$ | $\begin{aligned} & 0.011^{* * *} \\ & (0.002) \end{aligned}$ | $\begin{aligned} & 0.008^{* * *} \\ & (0.001) \end{aligned}$ | $\begin{aligned} & 0.007^{* * *} \\ & (0.001) \end{aligned}$ | $\begin{aligned} & 0.010^{* * *} \\ & (0.001) \end{aligned}$ |
| Hired women | $\begin{aligned} & 0.001 \\ & (0.001) \end{aligned}$ | $\begin{aligned} & 0.002^{* *} \\ & (0.001) \end{aligned}$ | $\begin{aligned} & 0.003^{* * *} \\ & (0.001) \end{aligned}$ | $\begin{aligned} & 0.001 \\ & (0.001) \end{aligned}$ | $\begin{aligned} & -0.003^{* * *} \\ & (0.001) \end{aligned}$ |
| Hired child labor | $\begin{aligned} & -0.019 * * * \\ & (0.002) \end{aligned}$ | $\begin{aligned} & -0.009^{* * *} \\ & (0.002) \end{aligned}$ | $\begin{aligned} & -0.001 \\ & (0.003) \end{aligned}$ | $\begin{aligned} & 0.002 \\ & (0.002) \end{aligned}$ | $\begin{aligned} & -0.017^{* * *} \\ & (0.002) \end{aligned}$ |
| Fertilizer (kg/hectare) (log) | $\begin{aligned} & 0.004 \\ & (0.003) \\ & \hline \end{aligned}$ | $\begin{aligned} & 0.011^{* * *} \\ & (0.002) \\ & \hline \end{aligned}$ | $\begin{aligned} & 0.026^{* * *} \\ & (0.003) \\ & \hline \end{aligned}$ | $\begin{aligned} & 0.015^{* * *} \\ & (0.002) \\ & \hline \end{aligned}$ | $\begin{aligned} & 0.003 \\ & (0.002) \\ & \hline \end{aligned}$ |

Table A6 continued
III) Bimodal Rainfall Humid Forest

|  | Plot headship |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Plot head | Plot de jure head | Plot migrant head | Plot manager | Plot owner |
| Herbicide (kg/hectare) (log) | $\begin{aligned} & \hline 0.001 \\ & (0.003) \end{aligned}$ | $\begin{aligned} & \hline 0.026^{* * *} \\ & (0.004) \end{aligned}$ | $\begin{aligned} & \hline 0.020^{* * *} \\ & (0.003) \end{aligned}$ | $\begin{aligned} & 0.019^{* * *} \\ & (0.003) \end{aligned}$ | $\begin{aligned} & \hline-0.017^{* * *} \\ & (0.003) \end{aligned}$ |
| Seed (kg/hectare) (log) | $\begin{aligned} & -0.009^{* * *} \\ & (0.003) \end{aligned}$ | $\begin{aligned} & -0.010^{* * *} \\ & (0.002) \end{aligned}$ | $\begin{aligned} & 0.006^{* * *} \\ & (0.002) \end{aligned}$ | $\begin{aligned} & -0.002 \\ & (0.002) \end{aligned}$ | $\begin{aligned} & -0.011^{* * *} \\ & (0.003) \end{aligned}$ |
| Agricultural tools (log) | $\begin{aligned} & -0.004^{* * *} \\ & (0.001) \end{aligned}$ | $\begin{aligned} & -0.013^{* * *} \\ & (0.003) \end{aligned}$ | $\begin{aligned} & 0.002 \\ & (0.002) \end{aligned}$ | $\begin{aligned} & 0.002^{* *} \\ & (0.001) \end{aligned}$ | $\begin{aligned} & -0.003^{* * *} \\ & (0.001) \end{aligned}$ |
| Mill's ratio | $\begin{aligned} & 0.023^{* * *} \\ & (0.004) \\ & \hline \end{aligned}$ | $\begin{aligned} & 0.015^{* * *} \\ & (0.003) \\ & \hline \end{aligned}$ | $\begin{aligned} & -0.001 \\ & (0.002) \\ & \hline \end{aligned}$ | $\begin{aligned} & -0.002 \\ & (0.002) \\ & \hline \end{aligned}$ | $\begin{aligned} & 0.019^{* * *} \\ & (0.004) \\ & \hline \end{aligned}$ |
| B2. Men's Structural Advantage |  |  |  |  |  |
| Age (years) | $\begin{aligned} & -0.190^{* * *} \\ & (0.088) \end{aligned}$ | $\begin{aligned} & -0.247^{* * *} \\ & (0.076) \end{aligned}$ | $\begin{aligned} & -0.401^{* * *} \\ & (0.061) \end{aligned}$ | $\begin{aligned} & 0.504^{* * *} \\ & (0.063) \end{aligned}$ | $\begin{aligned} & 0.073 \\ & (0.088) \end{aligned}$ |
| Age squared | $\begin{aligned} & 0.215^{* * *} \\ & (0.052) \end{aligned}$ | $\begin{aligned} & 0.321^{* * *} \\ & (0.039) \end{aligned}$ | $\begin{aligned} & 0.231^{* * *} \\ & (0.035) \end{aligned}$ | $\begin{aligned} & -0.157^{* * *} \\ & (0.037) \end{aligned}$ | $\begin{aligned} & 0.159^{* * *} \\ & (0.046) \end{aligned}$ |
| Education (years) | $\begin{aligned} & -0.055^{* * *} \\ & (0.017) \end{aligned}$ | $\begin{aligned} & -0.176^{* * *} \\ & (0.015) \end{aligned}$ | $\begin{aligned} & -0.073^{* * *} \\ & (0.013) \end{aligned}$ | $\begin{aligned} & -0.004 \\ & (0.011) \end{aligned}$ | $\begin{aligned} & 0.045^{* * *} \\ & (0.016) \end{aligned}$ |
| Married | $\begin{aligned} & -0.157^{* * *} \\ & (0.015) \end{aligned}$ | $\begin{aligned} & -0.293^{* * *} \\ & (0.014) \end{aligned}$ | $\begin{aligned} & 0.040^{* * *} \\ & (0.012) \end{aligned}$ | $\begin{aligned} & 0.040 * * * \\ & (0.008) \end{aligned}$ | $\begin{aligned} & -0.202^{* * *} \\ & (0.013) \end{aligned}$ |
| Household size | $\begin{aligned} & 0.057^{* * *} \\ & (0.015) \end{aligned}$ | $\begin{aligned} & 0.052^{* * *} \\ & (0.013) \end{aligned}$ | $\begin{aligned} & 0.060^{* * *} \\ & (0.010) \end{aligned}$ | $\begin{aligned} & -0.307^{* * *} \\ & (0.011) \end{aligned}$ | $\begin{aligned} & 0.039^{* * *} \\ & (0.015) \end{aligned}$ |
| Child-dependency ratio | $\begin{aligned} & -0.053^{* * *} \\ & (0.013) \end{aligned}$ | $\begin{aligned} & -0.009 \\ & (0.012) \end{aligned}$ | $\begin{aligned} & 0.081^{* * *} \\ & (0.010) \end{aligned}$ | $\begin{aligned} & -0.210^{* * *} \\ & (0.011) \end{aligned}$ | $\begin{aligned} & -0.011 \\ & (0.014) \end{aligned}$ |
| Livestock | $\begin{aligned} & 0.108^{* *} \\ & (0.008) \end{aligned}$ | $\begin{aligned} & 0.011^{* * *} \\ & (0.008) \end{aligned}$ | $\begin{aligned} & 0.119^{* * *} \\ & (0.008) \end{aligned}$ | $\begin{aligned} & -0.049^{* * *} \\ & (0.008) \end{aligned}$ | $\begin{aligned} & 0.043^{* * *} \\ & (0.011) \end{aligned}$ |
| Plot size | $\begin{aligned} & -0.221^{* * *} \\ & (0.025) \end{aligned}$ | $\begin{aligned} & -0.052^{* * *} \\ & (0.023) \end{aligned}$ | $\begin{aligned} & -0.192^{* * *} \\ & (0.024) \end{aligned}$ | $\begin{aligned} & -0.222^{* * *} \\ & (0.020) \end{aligned}$ | $\begin{aligned} & -0.186^{* * *} \\ & (0.026) \end{aligned}$ |
| Maincropping | $\begin{aligned} & -0.430^{* * *} \\ & (0.037) \end{aligned}$ | $\begin{aligned} & 0.768^{* * *} \\ & (0.210) \end{aligned}$ | $\begin{aligned} & -2.142^{* * *} \\ & (0.167) \end{aligned}$ | $\begin{aligned} & 0.644^{* * *} \\ & (0.296) \end{aligned}$ | $\begin{aligned} & -1.407^{* * *} \\ & (0.103) \end{aligned}$ |
| Plot distance to home | $\begin{aligned} & -0.077^{* * *} \\ & (0.009) \end{aligned}$ | $\begin{aligned} & -0.049^{* * *} \\ & (0.010) \end{aligned}$ | $\begin{aligned} & -0.031^{* * *} \\ & (0.007) \end{aligned}$ | $\begin{aligned} & -0.063^{* * *} \\ & (0.009) \end{aligned}$ | $\begin{aligned} & -0.131^{* * *} \\ & (0.010) \end{aligned}$ |
| Cost of irrigation (log) | $\begin{aligned} & -0.682^{* * *} \\ & (0.097) \end{aligned}$ | $\begin{aligned} & -0.732^{* * *} \\ & (0.069) \end{aligned}$ | $\begin{aligned} & -0.429^{* * *} \\ & (0.060) \end{aligned}$ | $\begin{aligned} & -0.189 * * * \\ & (0.061) \end{aligned}$ | $\begin{aligned} & 0.018 \\ & (0.073) \end{aligned}$ |
| Adult laboring men in family | $\begin{aligned} & 0.094^{* * *} \\ & (0.018) \end{aligned}$ | $\begin{aligned} & -0.033^{* *} \\ & (0.018) \end{aligned}$ | $\begin{aligned} & 0.265^{* * *} \\ & (0.016) \end{aligned}$ | $\begin{aligned} & 0.034^{* * *} \\ & (0.014) \end{aligned}$ | $\begin{aligned} & -0.041^{* * *} \\ & (0.017) \end{aligned}$ |
| Adult laboring women in family | $\begin{aligned} & -0.048^{* * *} \\ & (0.019) \end{aligned}$ | $\begin{aligned} & -0.099^{* * *} \\ & (0.012) \end{aligned}$ | $\begin{aligned} & 0.060^{* * *} \\ & (0.015) \end{aligned}$ | $\begin{aligned} & -0.011 \\ & (0.013) \end{aligned}$ | $\begin{aligned} & -0.016 \\ & (0.015) \end{aligned}$ |
| Child laborers in family | $\begin{aligned} & -0.057^{* * *} \\ & (0.014) \end{aligned}$ | $\begin{aligned} & 0.104^{* * *} \\ & (0.013) \end{aligned}$ | $\begin{aligned} & -0.104^{* * *} \\ & (0.010) \end{aligned}$ | $\begin{aligned} & -0.117^{* * *} \\ & (0.012) \end{aligned}$ | $\begin{aligned} & -0.005 \\ & (0.013) \end{aligned}$ |
| Hired men | $\begin{aligned} & -0.021^{* * *} \\ & (0.009) \end{aligned}$ | $\begin{aligned} & -0.038^{* * *} \\ & (0.005) \end{aligned}$ | $\begin{aligned} & -0.003 \\ & (0.006) \end{aligned}$ | $\begin{aligned} & -0.038^{* * *} \\ & (0.007) \end{aligned}$ | $\begin{aligned} & 0.036^{* * *} \\ & (0.006) \end{aligned}$ |
| Hired women | $\begin{aligned} & 0.061^{* * *} \\ & (0.010) \end{aligned}$ | $\begin{aligned} & 0.073^{* * *} \\ & (0.008) \end{aligned}$ | $\begin{aligned} & 0.086^{* * *} \\ & (0.010) \end{aligned}$ | $\begin{aligned} & 0.093^{* * *} \\ & (0.009) \end{aligned}$ | $\begin{aligned} & 0.140^{* * *} \\ & (0.011) \end{aligned}$ |
| Hired child labor | $\begin{aligned} & 0.005 \\ & (0.018) \end{aligned}$ | $\begin{aligned} & -0.072^{* * *} \\ & (0.017) \end{aligned}$ | $\begin{aligned} & -0.047^{* * *} \\ & (0.012) \end{aligned}$ | $\begin{aligned} & -0.040^{* * *} \\ & (0.012) \end{aligned}$ | $\begin{aligned} & 0.095^{* * *} \\ & (0.017) \end{aligned}$ |
| Fertilizer (kg/hectare) (log) | $\begin{aligned} & -0.005 \\ & (0.062) \end{aligned}$ | $\begin{aligned} & 0.284^{* * *} \\ & (0.050) \end{aligned}$ | $\begin{aligned} & 0.175^{* * *} \\ & (0.051) \end{aligned}$ | $\begin{aligned} & 0.322^{* * *} \\ & (0.045) \end{aligned}$ | $\begin{aligned} & -0.073 \\ & (0.063) \end{aligned}$ |
| Herbicide (kg/hectare) (log) | $\begin{aligned} & -0.033^{* * *} \\ & (0.009) \end{aligned}$ | $\begin{aligned} & 0.051^{* * *} \\ & (0.010) \end{aligned}$ | $\begin{aligned} & -0.032^{* * *} \\ & (0.007) \end{aligned}$ | $\begin{aligned} & -0.094^{* * *} \\ & (0.007) \end{aligned}$ | $\begin{aligned} & -0.032^{* *} \\ & (0.010) \end{aligned}$ |
| Seed (kg/hectare) (log) | $\begin{aligned} & -0.326^{* * *} \\ & (0.066) \end{aligned}$ | $\begin{aligned} & -0.792^{* * *} \\ & (0.062) \end{aligned}$ | $\begin{aligned} & -0.300^{* * *} \\ & (0.069) \end{aligned}$ | $\begin{aligned} & -0.633^{* * *} \\ & (0.054) \end{aligned}$ | $\begin{aligned} & -0.372^{* * *} \\ & (0.045) \end{aligned}$ |
| Agricultural tools (log) | $\begin{aligned} & 0.052 \\ & (0.054) \\ & \hline \end{aligned}$ | $\begin{aligned} & -0.947^{* * *} \\ & (0.060) \\ & \hline \end{aligned}$ | $\begin{aligned} & 0.297^{* * *} \\ & (0.051) \\ & \hline \end{aligned}$ | $\begin{aligned} & 0.695^{* * *} \\ & (0.043) \\ & \hline \end{aligned}$ | $\begin{aligned} & 0.040 \\ & (0.065) \\ & \hline \end{aligned}$ |


|  | Plot headship |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Plot head | Plot de jure head | Plot migrant head | Plot manager | Plot owner |
| Mill's ratio | $\begin{aligned} & \hline-3.913^{* * *} \\ & (0.209) \\ & \hline \end{aligned}$ | $\begin{aligned} & \hline-2.290^{* * *} \\ & (0.179) \end{aligned}$ | $\begin{aligned} & -0.871^{* * *} \\ & (0.148) \end{aligned}$ | $\begin{aligned} & \hline-2.254^{* * *} \\ & (0.177) \end{aligned}$ | $\begin{aligned} & \hline-4.146^{* * *} \\ & (0.217) \end{aligned}$ |
| B3. Women's Structural Disadvantage |  |  |  |  |  |
| Age (years) | $\begin{aligned} & -0.255^{* * *} \\ & (0.093) \end{aligned}$ | $\begin{aligned} & -0.764^{* * *} \\ & (0.108) \end{aligned}$ | $\begin{aligned} & -0.153 \\ & (0.144) \end{aligned}$ | $\begin{aligned} & -0.385^{* * *} \\ & (0.132) \end{aligned}$ | $\begin{aligned} & -0.673^{* * *} \\ & (0.091) \end{aligned}$ |
| Age squared | $\begin{aligned} & 0.171^{* * *} \\ & (0.052) \end{aligned}$ | $\begin{aligned} & 0.447^{* * *} \\ & (0.061) \end{aligned}$ | $\begin{aligned} & 0.050 \\ & (0.081) \end{aligned}$ | $\begin{aligned} & 0.299^{* * *} \\ & (0.069) \end{aligned}$ | $\begin{aligned} & 0.458^{* * *} \\ & (0.050) \end{aligned}$ |
| Education (years) | $\begin{aligned} & -0.185^{* * *} \\ & (0.016) \end{aligned}$ | $\begin{aligned} & -0.258^{* * *} \\ & (0.018) \end{aligned}$ | $\begin{aligned} & -0.054^{* * *} \\ & (0.020) \end{aligned}$ | $\begin{aligned} & 0.049^{* *} \\ & (0.026) \end{aligned}$ | $\begin{aligned} & -0.137^{* * *} \\ & (0.015) \end{aligned}$ |
| Married | $\begin{aligned} & -0.098^{* * *} \\ & (0.010) \end{aligned}$ | $\begin{aligned} & -0.115^{* * *} \\ & (0.012) \end{aligned}$ | $\begin{aligned} & -0.054^{* * *} \\ & (0.016) \end{aligned}$ | $\begin{aligned} & -0.111^{* * *} \\ & (0.018) \end{aligned}$ | $\begin{aligned} & -0.152^{* * *} \\ & (0.013) \end{aligned}$ |
| Household size | $\begin{aligned} & -0.067^{* * *} \\ & (0.018) \end{aligned}$ | $\begin{aligned} & 0.090^{* *} \\ & (0.016) \end{aligned}$ | $\begin{aligned} & 0.021 \\ & (0.023) \end{aligned}$ | $\begin{aligned} & -0293^{* * *} \\ & (0.022) \end{aligned}$ | $\begin{aligned} & -0.154^{* * *} \\ & (0.016) \end{aligned}$ |
| Child-dependency ratio | $\begin{aligned} & -0.082^{* * *} \\ & (0.017) \end{aligned}$ | $\begin{aligned} & -0.027^{*} \\ & (0.016) \end{aligned}$ | $\begin{aligned} & 0.068^{* * *} \\ & (0.018) \end{aligned}$ | $\begin{aligned} & -0.309^{* * *} \\ & (0.023) \end{aligned}$ | $\begin{aligned} & -0.120^{* * *} \\ & (0.015) \end{aligned}$ |
| Livestock | $\begin{aligned} & 0.128^{* * *} \\ & (0.012) \end{aligned}$ | $\begin{aligned} & 0.080^{* * *} \\ & (0.013) \end{aligned}$ | $\begin{aligned} & 0.052^{* * *} \\ & (0.015) \end{aligned}$ | $\begin{aligned} & 0.112^{* * *} \\ & (0.015) \end{aligned}$ | $\begin{aligned} & 0.210^{* * *} \\ & (0.014) \end{aligned}$ |
| Plot size | $\begin{aligned} & -0.142^{* * *} \\ & (0.030) \end{aligned}$ | $\begin{aligned} & -0.124^{* * *} \\ & (0.035) \end{aligned}$ | $\begin{aligned} & -0.257^{* * *} \\ & (0.036) \end{aligned}$ | $\begin{aligned} & -0.149^{* * *} \\ & (0.030) \end{aligned}$ | $\begin{aligned} & -0.259^{* * *} \\ & (0.033) \end{aligned}$ |
| Maincropping | $\begin{aligned} & 6.588^{* * *} \\ & (0.426) \end{aligned}$ | $\begin{aligned} & 4.523^{* * *} \\ & (0.259) \end{aligned}$ | $\begin{aligned} & 5.284^{* * *} \\ & (0.352) \end{aligned}$ | $\begin{aligned} & 2.880^{* * *} \\ & (0.184) \end{aligned}$ | $\begin{aligned} & 1.799^{* * *} \\ & (0.346) \end{aligned}$ |
| Plot distance to home | $\begin{aligned} & -0.384^{* * *} \\ & (0.017) \end{aligned}$ | $\begin{aligned} & -0.284^{* * *} \\ & (0.020) \end{aligned}$ | $\begin{aligned} & 0.079 * * * \\ & (0.023) \end{aligned}$ | $\begin{aligned} & -0.045^{* * *} \\ & (0.017) \end{aligned}$ | $\begin{aligned} & -0.231^{* * *} \\ & (0.019) \end{aligned}$ |
| Cost of irrigation (log) | $\begin{aligned} & 0.147^{* * *} \\ & (0.099) \end{aligned}$ | $\begin{aligned} & 0.335^{* * *} \\ & (0.119) \end{aligned}$ | $\begin{aligned} & -0.308^{* * *} \\ & (0.128) \end{aligned}$ | $\begin{aligned} & -0.818^{* * *} \\ & (0.121) \end{aligned}$ | $\begin{aligned} & -0.427^{* * *} \\ & (0.106) \end{aligned}$ |
| Adult laboring men in family | $\begin{aligned} & 0.106^{* * *} \\ & (0.018) \end{aligned}$ | $\begin{aligned} & 0.092^{* * *} \\ & (0.029) \end{aligned}$ | $\begin{aligned} & 0.462^{* * *} \\ & (0.023) \end{aligned}$ | $\begin{aligned} & -0.093^{* * *} \\ & (0.029) \end{aligned}$ | $\begin{aligned} & -0.178^{* * *} \\ & (0.022) \end{aligned}$ |
| Adult laboring women in family | $\begin{aligned} & 0.020 \\ & (0.014) \end{aligned}$ | $\begin{aligned} & 0.002 \\ & (0.018) \end{aligned}$ | $\begin{aligned} & 0.088^{* * *} \\ & (0.019) \end{aligned}$ | $\begin{aligned} & -0.095^{* * *} \\ & (0.019) \end{aligned}$ | $\begin{aligned} & 0.073^{* * *} \\ & (0.017) \end{aligned}$ |
| Child laborers in family | $\begin{aligned} & -0.074^{* * *} \\ & (0.015) \end{aligned}$ | $\begin{aligned} & 0.074^{* * *} \\ & (0.014) \end{aligned}$ | $\begin{aligned} & -0.347^{* * *} \\ & (0.015) \end{aligned}$ | $\begin{aligned} & -0.096^{* * *} \\ & (0.015) \end{aligned}$ | $\begin{aligned} & -0.011 \\ & (0.015) \end{aligned}$ |
| Hired men | $\begin{aligned} & -0.158^{* * *} \\ & (0.012) \end{aligned}$ | $\begin{aligned} & -0.111^{* * *} \\ & (0.013) \end{aligned}$ | $\begin{aligned} & -0.072^{* * *} \\ & (0.012) \end{aligned}$ | $\begin{aligned} & -0.128^{* * *} \\ & (0.010) \end{aligned}$ | $\begin{aligned} & -0.038^{* * *} \\ & (0.012) \end{aligned}$ |
| Hired women | $\begin{aligned} & -0.002 \\ & (0.008) \end{aligned}$ | $\begin{aligned} & 0.034^{* * *} \\ & (0.013) \end{aligned}$ | $\begin{aligned} & 0.037^{* * *} \\ & (0.013) \end{aligned}$ | $\begin{aligned} & -0.014 \\ & (0.011) \end{aligned}$ | $\begin{aligned} & 0.045^{* * *} \\ & (0.009) \end{aligned}$ |
| Hired child labor | $\begin{aligned} & -0.052^{* * *} \\ & (0.011) \end{aligned}$ | $\begin{aligned} & -0.048^{* * *} \\ & (0.010) \end{aligned}$ | $\begin{aligned} & 0.045^{* * *} \\ & (0.011) \end{aligned}$ | $\begin{aligned} & -0.038^{* * *} \\ & (0.017) \end{aligned}$ | $\begin{aligned} & 0.016 \\ & (0.012) \end{aligned}$ |
| Fertilizer (kg/hectare) (log) | $\begin{aligned} & 0.031 \\ & (0.056) \end{aligned}$ | $\begin{aligned} & 0.164^{* * *} \\ & (0.075) \end{aligned}$ | $\begin{aligned} & 0.350^{* * *} \\ & (0.073) \end{aligned}$ | $\begin{aligned} & 1.100^{* * *} \\ & (0.076) \end{aligned}$ | $\begin{aligned} & 0.386^{* * *} \\ & (0.071) \end{aligned}$ |
| Herbicide (kg/hectare) (log) | $\begin{aligned} & -0.006 \\ & (0.012) \end{aligned}$ | $\begin{aligned} & 0.082^{* * *} \\ & (0.016) \end{aligned}$ | $\begin{aligned} & -0.113^{* * *} \\ & (0.017) \end{aligned}$ | $\begin{aligned} & -0.140^{* * *} \\ & (0.019) \end{aligned}$ | $\begin{aligned} & 0.014 \\ & (0.013) \end{aligned}$ |
| Seed (kg/hectare) (log) | $\begin{aligned} & -0.011 \\ & (0.057) \end{aligned}$ | $\begin{aligned} & -0.126^{* * *} \\ & (0.088) \end{aligned}$ | $\begin{aligned} & -0.486^{* * *} \\ & (0.062) \end{aligned}$ | $\begin{aligned} & -0.571^{* * *} \\ & (0.066) \end{aligned}$ | $\begin{aligned} & -0.012 \\ & (0.052) \end{aligned}$ |
| Agricultural tools (log) | $\begin{aligned} & -0.939^{* * *} \\ & (0.080) \end{aligned}$ | $\begin{aligned} & -1.157^{* * *} \\ & (0.071) \end{aligned}$ | $\begin{aligned} & 0.556^{* * *} \\ & (0.088) \end{aligned}$ | $\begin{aligned} & 0.492^{* * *} \\ & (0.070) \end{aligned}$ | $\begin{aligned} & -0.008 \\ & (0.057) \end{aligned}$ |
| Mill's ratio | $\begin{aligned} & -2.616^{* * *} \\ & (0.185) \\ & \hline \end{aligned}$ | $\begin{aligned} & -3.211^{* * *} \\ & (0.219) \end{aligned}$ | $\begin{aligned} & 0.216 \\ & (0.317) \end{aligned}$ | $\begin{aligned} & -2.780^{* * *} \\ & (0.326) \\ & \hline \end{aligned}$ | $\begin{aligned} & -3.644^{* * *} \\ & (0.210) \end{aligned}$ |

Note. ${ }^{* * *},{ }^{* *}$, and * indicate statistical significance at the $1 \%, 5 \%$, and $10 \%$ level, respectively; robust standard errors in parentheses; district fixed-effects.
Source: Authors' calculations based on IRAD.

Table A7: Estimates of Indirect Contributors to Gender Disparities across Agroecological Zones

| Variable | (i) Sahel |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Plot head (Dependent variable: seed) |  |  | Plot de jure head (Dependent variable: family labor by men/boys) |  |  | Plot migrant head (Dependent variable: age) |  |  |
|  | Pooled | Women | Men | Pooled | Women | Men | Pooled | Women | Men |
| Constant | 3.470*** | $3.502^{* * *}$ | 3.465*** | 7.888*** | 9.181*** | 7.205*** | 33.659*** | 31.256*** | 35.176*** |
| Age | 0.001 | 0.004 | -0.001 | 0.029 | -0.033 | 0.063 | / | 1 | / |
| Age squared | 0.001 | -0.006 | 0.003 | -0.029 | 0.043 | -0.067 | / | / | / |
| Education | 0.006 | -0.011 | 0.016 | 0.040 | -0.011 | 0.071 | $-2.037^{* * *}$ | -1.701*** | $-2.203^{* * *}$ |
| Equipment | / | / | / | 0.019 | -0.023 | 0.039* | -0.059 | -0.105 | -0.031 |
| Credit | -0.036 | -0.123 | 0.005 | 0.169 | -0.098 | 0.242 | -0.835 | 1.244 | -2.205* |
| Maincropping | -0.063 | -0.091 | -0.048 | -0.266 | 0.585 | -0.726* | $12.431^{* * *}$ | 12.048*** | 12.830*** |
| Plot distance | / | / | / | / | / | / | 0.119 | -0.126 | 0.224 |
| Number obs. | 1,617 | 550 | 1,067 | 1,617 | 614 | 1,003 | 1,617 | 609 | 1,008 |
| R-squared | 0.005 | 0.012 | 0.008 | 0.003 | 0.005 | 0.012 | 0.275 | 0.256 | 0.293 |
| Variable | Plot manager (Dependent variable: plot size) |  |  |  |  | Plot owner (Dependent variable: age) |  |  |  |
|  | Pooled |  |  | Women | Men | Pooled | Women |  | Men |
| Constant | 1.106*** |  |  | 1.122*** | 1.086*** | 33.659*** | 28.007*** |  | 36.994*** |
| Age | -0.001 |  |  | -0.006 | 0.004 | / | / |  | 1 |
| Age squared | 0.0004 |  |  | 0.005 | -0.005 | / | / |  | / |
| Education | -0.012 |  |  | -0.005 | -0.023* | -2.037*** |  | 53*** | $-2.187^{* * *}$ |
| Equipment | $0.006^{* * *}$ |  |  | 0.009*** | 0.003 | -0.059 |  |  | -0.057 |
| Credit | -0.018 |  |  | -0.052 | 0.045 | -0.835 |  |  | -0.618 |
| Maincropping | 0.011 |  |  | 0.040 | -0.006 | $12.431^{* * *}$ |  | 35** | 12.099*** |
| Plot distance | 0.003 |  |  | 0.006 | -0.001 | / | / |  | / |
| Plot size | / |  |  | / | / | 0.119 |  |  | 0.163 |
| Ethnicity | 0.077*** |  |  | 0.076** | 0.079* | / | / |  | / |
| Number obs. | 1,617 |  |  | 925 | 692 | 1,617 | 58 |  | 1,029 |
| R-squared | 0.021 |  |  | 0.032 | 0.023 | 0.275 |  |  | 0.269 |
| Variable | (ii) Western Highlands |  |  |  |  |  |  |  |  |
|  | Plot head (Dependent variable: fertilizer) |  |  | Plot de jure head (Dependent variable: fertilizer) |  |  | Plot migrant head (Dependent variable: age) |  |  |
|  | Pooled | Women | Men | Pooled | Women | Men P | Pooled | Women | Men |
| Constant | 4.888*** | 5.100*** | 4.707*** | 4.888*** | $4.831^{* * *}$ | 4.876*** 33. | 33.659*** | 31.256*** | 35.176*** |
| Age | 0.004 | -0.011 | 0.015 | 0.004 | -0.002 | 0.009 / | / | / | / |
| Age squared | -0.006 | 0.012 | -0.021 | -0.006 | 0.004 | -0.015 / |  | / | 1 |
| Education | -0.001 | -0.005 | 0.006 | -0.001 | 0.003 | $0.0003-2.0$ | $-2.037^{* * *}$ | $-1.701^{* * *}$ | $-2.203^{* * *}$ |
|  |  |  |  |  | 68 |  |  |  |  |


| Cost fertilizer | $-0.0003^{* * *}$ | $-0.0002^{* * *}$ | $-0.0004^{* * *}$ | $-0.0003^{* * *}$ | $-0.0003^{* * *}$ | $-0.0003^{* * *}$ | $/$ | $/$ | $/$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Equipment | $0.007^{* *}$ | 0.002 | $0.011^{* *}$ | $0.007^{*}$ | 0.008 | $0.007^{*}$ | -0.059 | -0.105 | -0.031 |
| Credit | -0.036 | -0.221 | 0.112 | -0.036 | -0.269 | 0.087 | -0.834 | 1.244 | $-2.205^{*}$ |
| Maincropping | -0.028 | 0.114 | -0.169 | -0.028 | 0.108 | -0.138 | $12.431^{* * *}$ | $12.048^{* * *}$ | $12.830^{* * *}$ |
| Plot size | $/$ | $/$ | $/$ | $/$ | $/$ | $/$ | -0.542 | 0.296 | -1.138 |
| Plot distance | $/$ | $/$ | $/$ | $/$ | $/$ | 0.119 | -0.126 | 0.224 |  |
| Number obs. | 1,238 | 540 | 698 | 1,238 | 526 | 712 | 1,617 | 609 | 1,008 |
| R-squared | 0.107 | 0.112 | 0.128 | 0.107 | 0.123 | 0.109 | 0.275 | 0.256 | 0.293 |

Table A7 continued


Notes: ${ }^{* * *},{ }^{* *}$, and ${ }^{*}$ indicate significant at the $1 \%, 5 \%$, and $10 \%$ level, respectively.
Source: Authors' calculations based on IRAD.

Table A8: Detailed Decomposition of Gender Disparities in Agricultural Productivity in Percentiles by Gender and Agroecological Zone

| Percentile | Plot head | Plot de jure head |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Endowment effect | Men's structural advantage | Women's structural disadvantage | Endowment effect | Men's structural advantage | Women's structural disadvantage |
| 0.025 | $\begin{aligned} & \hline-0.071 \\ & (-0.083,0.059) \end{aligned}$ | $\begin{aligned} & 0.014 \\ & (0.011,0.018) \end{aligned}$ | $\begin{aligned} & 0.025 \\ & (0.019,0.031) \end{aligned}$ | $\begin{aligned} & \hline 0.035 \\ & (0.025,0.045) \end{aligned}$ | $\begin{aligned} & -0.001 \\ & (-0.005,0.002) \end{aligned}$ | $\begin{aligned} & -0.002 \\ & (-0.008,0.004) \end{aligned}$ |
| 0.050 | $\begin{aligned} & -0.063 \\ & (-0.074,-0.052) \end{aligned}$ | $\begin{aligned} & 0.016 \\ & (0.012,0.019) \end{aligned}$ | $\begin{aligned} & 0.028 \\ & (0.022,0.033) \end{aligned}$ | $\begin{aligned} & 0.021 \\ & (0.013,0.028) \end{aligned}$ | $\begin{aligned} & 0.0004 \\ & (-0.003,0.004) \end{aligned}$ | $\begin{aligned} & 0.001 \\ & (-0.005,0.006) \end{aligned}$ |
| 0.075 | $\begin{aligned} & -0.052 \\ & (-0.060,-0.044) \end{aligned}$ | $\begin{aligned} & 0.015 \\ & (0.012,0.018) \end{aligned}$ | $\begin{aligned} & 0.027 \\ & (0.022,0.032) \end{aligned}$ | $\begin{aligned} & 0.010 \\ & (0.005,0.016) \end{aligned}$ | $\begin{aligned} & 0.001 \\ & (-0.002,0.005) \end{aligned}$ | $\begin{aligned} & 0.002 \\ & (-0.003,0.008) \end{aligned}$ |
| 0.100 | $\begin{aligned} & -0.042 \\ & (-0.047,-0.036) \end{aligned}$ | $\begin{aligned} & 0.014 \\ & (0.012,0.017) \end{aligned}$ | $\begin{aligned} & 0.025 \\ & (0.021,0.030) \end{aligned}$ | $\begin{aligned} & 0.003 \\ & (-0.001,0.008) \end{aligned}$ | $\begin{aligned} & 0.002 \\ & (-0.001,0.005) \end{aligned}$ | $\begin{aligned} & 0.003 \\ & (-0.002,0.008) \end{aligned}$ |
| 0.125 | $\begin{aligned} & -0.033 \\ & (-0.038,-0.028) \end{aligned}$ | $\begin{aligned} & 0.013 \\ & (0.011,0.015) \end{aligned}$ | $\begin{aligned} & 0.023 \\ & (0.019,0.028) \end{aligned}$ | $\begin{aligned} & -0.0001 \\ & (-0.004,0.004) \end{aligned}$ | $\begin{aligned} & 0.001 \\ & (-0.001,0.004) \end{aligned}$ | $\begin{aligned} & 0.002 \\ & (-0.002,0.006) \end{aligned}$ |
| 0.150 | $\begin{aligned} & -0.022 \\ & (-0.031,-0.023) \end{aligned}$ | $\begin{aligned} & 0.012 \\ & (0.010,0.014) \end{aligned}$ | $\begin{aligned} & 0.022 \\ & (0.018,0.025) \end{aligned}$ | $\begin{aligned} & -0.001 \\ & (-0.005,0.002) \end{aligned}$ | $\begin{aligned} & 0.002 \\ & (-0.001,0.004) \end{aligned}$ | $\begin{aligned} & 0.003 \\ & (-0.001,0.006) \end{aligned}$ |
| 0.175 | $\begin{aligned} & -0.024 \\ & (-0.029,-0.020) \end{aligned}$ | $\begin{aligned} & 0.012 \\ & (0.010,0.013) \end{aligned}$ | $\begin{aligned} & 0.021 \\ & (0.019,0.024) \end{aligned}$ | $\begin{aligned} & -0.002 \\ & (-0.005,0.001) \end{aligned}$ | $\begin{aligned} & 0.002 \\ & (0.001,0.004) \end{aligned}$ | $\begin{aligned} & 0.004 \\ & (0.001,0.007) \end{aligned}$ |
| 0.200 | $\begin{aligned} & -0.024 \\ & (-0.028,-0.021) \end{aligned}$ | $\begin{aligned} & 0.011 \\ & (0.010,0.013) \end{aligned}$ | $\begin{aligned} & 0.021 \\ & (0.019,0.023) \end{aligned}$ | $\begin{aligned} & -0.003 \\ & (-0.007,0.0003) \end{aligned}$ | $\begin{aligned} & 0.004 \\ & (0.003,0.006) \end{aligned}$ | $\begin{aligned} & 0.007 \\ & (0.004,0.009) \end{aligned}$ |
| 0.225 | $\begin{aligned} & -0.025 \\ & (-0.028,-0.023) \end{aligned}$ | $\begin{aligned} & 0.011 \\ & (0.010,0.012) \end{aligned}$ | $\begin{aligned} & 0.021 \\ & (0.018,0.023) \end{aligned}$ | $\begin{aligned} & -0.005 \\ & (-0.008,-0.002) \end{aligned}$ | $\begin{aligned} & 0.006 \\ & (0.005,0.007) \end{aligned}$ | $\begin{aligned} & 0.010 \\ & (0.008,0.013) \end{aligned}$ |
| 0.250 | $\begin{aligned} & -0.028 \\ & (-0.030,-0.025) \end{aligned}$ | $\begin{aligned} & 0.010 \\ & (0.009,0.011) \end{aligned}$ | $\begin{aligned} & 0.019 \\ & (0.017,0.021) \end{aligned}$ | $\begin{aligned} & -0.007 \\ & (-0.009,-0.005) \end{aligned}$ | $\begin{aligned} & 0.007 \\ & (0.006,0.009) \end{aligned}$ | $\begin{aligned} & 0.012 \\ & (0.010,0.015) \end{aligned}$ |
| 0.275 | $\begin{aligned} & -0.030 \\ & (-0.032,-0.027) \end{aligned}$ | $\begin{aligned} & 0.009 \\ & (0.008,0.010) \end{aligned}$ | $\begin{aligned} & 0.017 \\ & (0.014,0.019) \end{aligned}$ | $\begin{aligned} & -0.010 \\ & (-0.011,-0.008) \end{aligned}$ | $\begin{aligned} & 0.007 \\ & (0.006,0.008) \end{aligned}$ | $\begin{aligned} & 0.012 \\ & (0.011,0.014) \end{aligned}$ |
| 0.300 | $\begin{aligned} & -0.032 \\ & (-0.034,-0.029) \end{aligned}$ | $\begin{aligned} & 0.007 \\ & (0.006,0.008) \end{aligned}$ | $\begin{aligned} & 0.013 \\ & (0.011,0.014) \end{aligned}$ | $\begin{aligned} & -0.012 \\ & (-0.014,-0.010) \end{aligned}$ | $\begin{aligned} & 0.005 \\ & (0.004,0.007) \end{aligned}$ | $\begin{aligned} & 0.010 \\ & (0.008,0.011) \end{aligned}$ |
| 0.325 | $\begin{aligned} & -0.032 \\ & (-0.034,-0.030) \end{aligned}$ | $\begin{aligned} & 0.004 \\ & (0.003,0.005) \end{aligned}$ | $\begin{aligned} & 0.008 \\ & (0.006,0.009) \end{aligned}$ | $\begin{aligned} & -0.012 \\ & (-0.014,-0.010) \end{aligned}$ | $\begin{aligned} & 0.002 \\ & (0.001,0.003) \end{aligned}$ | $\begin{aligned} & 0.004 \\ & (0.002,0.006) \end{aligned}$ |
| 0.350 | $\begin{aligned} & -0.031 \\ & (-0.032,-0.029) \end{aligned}$ | $\begin{aligned} & 0.002 \\ & (0.001,0.002) \end{aligned}$ | $\begin{aligned} & 0.003 \\ & (0.001,0.004) \end{aligned}$ | $\begin{aligned} & -0.011 \\ & (-0.013,-0.009) \end{aligned}$ | $\begin{aligned} & -0.002 \\ & (-0.003,-.0005) \end{aligned}$ | $\begin{aligned} & -0.003 \\ & (-0.004,-.001) \end{aligned}$ |
| 0.375 | $\begin{aligned} & -0.027 \\ & (-0.029,-0.025) \end{aligned}$ | $\begin{aligned} & -0.001 \\ & (-0.002,- \\ & 0.0002) \end{aligned}$ | $\begin{aligned} & -0.001 \\ & (-0.003,- \\ & 0.0004) \end{aligned}$ | $\begin{aligned} & -0.007 \\ & (-0.009,-0.006) \end{aligned}$ | $\begin{aligned} & -0.005 \\ & (-0.006,-0.004) \end{aligned}$ | $\begin{aligned} & -0.008 \\ & (-0.010,-.007) \end{aligned}$ |
| 0.400 | $\begin{aligned} & -0.023 \\ & (-0.025,-0.021) \end{aligned}$ | $\begin{aligned} & -0.003 \\ & (-0.003,-0.002) \end{aligned}$ | $\begin{aligned} & -0.005 \\ & (-0.006,-0.004) \end{aligned}$ | $\begin{aligned} & -0.003 \\ & (-0.005,-0.001) \end{aligned}$ | $\begin{aligned} & -0.007 \\ & (-0.008,-0.006) \end{aligned}$ | $\begin{aligned} & -0.011 \\ & (-0.012,-0.010) \end{aligned}$ |
| 0.425 | $\begin{aligned} & -0.019 \\ & (-0.021,-0.017) \end{aligned}$ | $\begin{aligned} & -0.004 \\ & (-0.005,-0.003) \end{aligned}$ | $\begin{aligned} & -0.006 \\ & (-0.007,-0.005) \end{aligned}$ | $\begin{aligned} & 0.0004 \\ & (-0.001,0.002) \end{aligned}$ | $\begin{aligned} & -0.007 \\ & (-0.008,-0.006) \end{aligned}$ | $\begin{aligned} & -0.011 \\ & (-0.012,-0.009) \end{aligned}$ |
| 0.450 | $\begin{aligned} & -0.015 \\ & (-0.016,-0.013) \end{aligned}$ | $\begin{aligned} & -0.004 \\ & (-0.005,-0.003) \end{aligned}$ | $\begin{aligned} & -0.006 \\ & (-0.007,-0.005) \end{aligned}$ | $\begin{aligned} & 0.003 \\ & (0.001,0.005) \end{aligned}$ | $\begin{aligned} & -0.005 \\ & (-0.006,-0.004) \end{aligned}$ | $\begin{aligned} & -0.008 \\ & (-0.009,-0.006) \end{aligned}$ |
| 0.475 | $\begin{aligned} & -0.010 \\ & (-0.012,-0.008) \end{aligned}$ | $\begin{aligned} & -0.004 \\ & (-0.005,-0.003) \end{aligned}$ | $\begin{aligned} & -0.005 \\ & (-0.006,-0.004) \end{aligned}$ | $\begin{aligned} & 0.004 \\ & (0.002,0.006) \end{aligned}$ | $\begin{aligned} & -0.003 \\ & (-0.004,-0.002) \end{aligned}$ | $\begin{aligned} & -0.004 \\ & (-0.006,-0.003) \end{aligned}$ |
| 0.500 | $\begin{aligned} & -0.004 \\ & (-0.006,-0.002) \end{aligned}$ | $\begin{aligned} & -0.002 \\ & (-0.003,-0.001) \end{aligned}$ | $\begin{aligned} & -0.003 \\ & (-0.004,-0.002) \end{aligned}$ | $\begin{aligned} & 0.004 \\ & (0.002,0.005) \end{aligned}$ | $\begin{aligned} & -0.001 \\ & (-0.002,0.0001) \end{aligned}$ | $\begin{aligned} & -0.001 \\ & (-0.003,0.0002) \end{aligned}$ |
| 0.525 | $\begin{aligned} & 0.003 \\ & (0.001,0.005) \end{aligned}$ | $\begin{aligned} & 0.00003 \\ & (-0.001,0.001) \end{aligned}$ | $\begin{aligned} & 0.00005 \\ & (-0.001,0.001) \end{aligned}$ | $\begin{aligned} & 0.003 \\ & (0.001,0.005) \end{aligned}$ | $\begin{aligned} & 0.0003 \\ & (-0.001,0.001) \end{aligned}$ | $\begin{aligned} & 0.0005 \\ & (-0.001,0.002) \end{aligned}$ |
| 0.550 | $\begin{aligned} & 0.009 \\ & (0.007,0.012) \end{aligned}$ | $\begin{aligned} & 0.003 \\ & (0.002,0.004) \end{aligned}$ | $\begin{aligned} & 0.004 \\ & (0.003,0.005) \end{aligned}$ | $\begin{aligned} & 0.002 \\ & (0.0001,0.004) \\ & \hline \end{aligned}$ | $\begin{aligned} & 0.0004 \\ & (-0.0004,0.001) \end{aligned}$ | $\begin{aligned} & 0.001 \\ & (-0.001,0.002) \\ & \hline \end{aligned}$ |

Table A8 continued
I) Sahel

| Percentile | Plot head |  |  | Plot de jure head |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Endowment effect | Men's structural advantage | Women's structural disadvantage | Endowment effect | Men's structural advantage | Women's structural disadvantage |
| 0.575 | $\begin{aligned} & 0.015 \\ & (0.013,0.017) \end{aligned}$ | $\begin{aligned} & 0.006 \\ & (0.005,0.007) \end{aligned}$ | $\begin{aligned} & 0.009 \\ & (0.008,0.010) \end{aligned}$ | $\begin{aligned} & 0.001 \\ & (-0.001,0.003) \end{aligned}$ | $\begin{aligned} & 0.0001 \\ & (-0.001,0.001) \end{aligned}$ | $\begin{aligned} & 0.0001 \\ & (-0.001,0.001) \end{aligned}$ |
| 0.600 | $\begin{aligned} & 0.019 \\ & (0.017,0.021) \end{aligned}$ | $\begin{aligned} & 0.009 \\ & (0.008,0.010) \end{aligned}$ | $\begin{aligned} & 0.014 \\ & (0.013,0.015) \end{aligned}$ | $\begin{aligned} & 0.001 \\ & (-0.001,0.003) \end{aligned}$ | $\begin{aligned} & -0.0002 \\ & (-0.001,0.001) \\ & \hline \end{aligned}$ | $\begin{aligned} & -0.0003 \\ & (-0.002,0.001) \end{aligned}$ |
| 0.625 | $\begin{aligned} & 0.019 \\ & (0.017,0.021) \end{aligned}$ | $\begin{aligned} & 0.011 \\ & (0.011,0.012) \end{aligned}$ | $\begin{aligned} & 0.019 \\ & (0.018,0.020) \end{aligned}$ | $\begin{aligned} & 0.001 \\ & (-0.001,0.003) \end{aligned}$ | $\begin{aligned} & 0.00004 \\ & (-0.001,0.001) \\ & \left(\begin{array}{l} 0 \end{array}\right) \end{aligned}$ | $\begin{aligned} & 0.0001 \\ & (-0.001,0.002) \end{aligned}$ |
| 0.650 | $\begin{aligned} & 0.017 \\ & (0.015,0.019) \end{aligned}$ | $\begin{aligned} & 0.012 \\ & (0.012,0.013) \end{aligned}$ | $\begin{aligned} & 0.022 \\ & (0.020,0.023) \end{aligned}$ | $\begin{aligned} & 0.001 \\ & (-0.001,0.003) \end{aligned}$ | $\begin{aligned} & 0.0005 \\ & (-0.001,0.002) \end{aligned}$ | $\begin{aligned} & 0.001 \\ & (-0.001,0.002) \end{aligned}$ |
| 0.675 | $\begin{aligned} & 0.011 \\ & (0.009,0.014) \end{aligned}$ | $\begin{aligned} & 0.012 \\ & (0.011,0.013) \end{aligned}$ | $\begin{aligned} & 0.023 \\ & (0.021,0.025) \end{aligned}$ | $\begin{aligned} & 0.001 \\ & (-0.001,0.003) \end{aligned}$ | $\begin{aligned} & 0.001 \\ & (0.0002, \\ & 0.002) \end{aligned}$ | $\begin{aligned} & 0.002 \\ & (0.0003,0.003) \end{aligned}$ |
| 0.700 | $\begin{aligned} & 0.005 \\ & (0.003,0.007) \end{aligned}$ | $\begin{aligned} & 0.012 \\ & (0.011,0.012) \end{aligned}$ | $\begin{aligned} & 0.023 \\ & (0.022,0.025) \end{aligned}$ | $\begin{aligned} & 0.0004 \\ & (-0.001,0.002) \end{aligned}$ | $\begin{aligned} & 0.002 \\ & (0.001,0.003) \end{aligned}$ | $\begin{aligned} & 0.002 \\ & (0.001,0.004) \end{aligned}$ |
| 0.725 | $\begin{aligned} & -0.002 \\ & (-0.004,0.0003) \end{aligned}$ | $\begin{aligned} & 0.011 \\ & (0.011,0.012) \end{aligned}$ | $\begin{aligned} & 0.024 \\ & (0.022,0.026) \end{aligned}$ | $\begin{aligned} & -0.0004 \\ & (-0.002,0.002) \end{aligned}$ | $\begin{aligned} & 0.002 \\ & (0.001,0.003) \end{aligned}$ | $\begin{aligned} & 0.003 \\ & (0.001,0.005) \end{aligned}$ |
| 0.750 | $\begin{aligned} & -0.008 \\ & (-0.010,-0.006) \end{aligned}$ | $\begin{aligned} & 0.012 \\ & (0.011,0.013) \end{aligned}$ | $\begin{aligned} & 0.027 \\ & (0.024,0.029) \end{aligned}$ | $\begin{aligned} & -0.001 \\ & (-0.003,0.001) \end{aligned}$ | $\begin{aligned} & 0.002 \\ & (0.001,0.003) \end{aligned}$ | $\begin{aligned} & 0.003 \\ & (0.001,0.005) \end{aligned}$ |
| 0.775 | $\begin{aligned} & -0.012 \\ & (-0.014,-0.009) \end{aligned}$ | $\begin{aligned} & 0.014 \\ & (0.013,0.015) \end{aligned}$ | $\begin{aligned} & 0.032 \\ & (0.030,0.034) \end{aligned}$ | $\begin{aligned} & -0.001 \\ & (-0.003,0.001 \\ & ) \end{aligned}$ | $\begin{aligned} & 0.003 \\ & (0.002,0.004) \end{aligned}$ | $\begin{aligned} & 0.004 \\ & (0.003,0.006) \end{aligned}$ |
| 0.800 | $\begin{aligned} & -0.013 \\ & (-0.015,0.011) \end{aligned}$ | $\begin{aligned} & 0.017 \\ & (0.016,0.018) \end{aligned}$ | $\begin{aligned} & 0.041 \\ & (0.038,0.043) \end{aligned}$ | $\begin{aligned} & -0.002 \\ & (-0.004,0.0001) \end{aligned}$ | $\begin{aligned} & 0.005 \\ & (0.004,0.006) \end{aligned}$ | $\begin{aligned} & 0.008 \\ & (0.007,0.010) \end{aligned}$ |
| 0.825 | $\begin{aligned} & -0.012 \\ & (-0.014,0.009) \end{aligned}$ | $\begin{aligned} & 0.021 \\ & (0.020,0.022) \end{aligned}$ | $\begin{aligned} & 0.052 \\ & (0.050,0.055) \end{aligned}$ | $\begin{aligned} & -0.003 \\ & (-0.005,-0.001) \end{aligned}$ | $\begin{aligned} & 0.010 \\ & (0.008,0.011) \end{aligned}$ | $\begin{aligned} & 0.015 \\ & (0.013,0.017) \end{aligned}$ |
| 0.850 | $\begin{aligned} & -0.007 \\ & (-0.010,-0.004) \end{aligned}$ | $\begin{aligned} & 0.025 \\ & (0.024,0.026) \end{aligned}$ | $\begin{aligned} & 0.066 \\ & (0.063,0.069) \end{aligned}$ | $\begin{aligned} & -0.005 \\ & (-0.008,-0.002) \end{aligned}$ | $\begin{aligned} & 0.015 \\ & (0.014,0.017) \end{aligned}$ | $\begin{aligned} & 0.025 \\ & (0.022,0.027) \end{aligned}$ |
| 0.875 | $\begin{aligned} & 0.0004 \\ & (-0.003,0.004) \end{aligned}$ | $\begin{aligned} & 0.028 \\ & (0.026,0.029) \end{aligned}$ | $\begin{aligned} & 0.078 \\ & (0.075,0.082) \end{aligned}$ | $\begin{aligned} & -0.007 \\ & (-0.010,-0.003) \end{aligned}$ | $\begin{aligned} & 0.021 \\ & (0.019,0.023) \end{aligned}$ | $\begin{aligned} & 0.035 \\ & (0.032, .037) \end{aligned}$ |
| 0.900 | $\begin{aligned} & 0.011 \\ & (0.006,0.015) \end{aligned}$ | $\begin{aligned} & 0.029 \\ & (0.028,0.031) \end{aligned}$ | $\begin{aligned} & 0.089 \\ & (0.084,0.094) \end{aligned}$ | $\begin{aligned} & -0.006 \\ & (-0.010,-0.001) \end{aligned}$ | $\begin{aligned} & 0.025 \\ & (0.023,0.027) \end{aligned}$ | $\begin{aligned} & 0.043 \\ & (0.040, .046) \end{aligned}$ |
| 0.925 | $\begin{aligned} & 0.023 \\ & (0.016,0.029) \end{aligned}$ | $\begin{aligned} & 0.029 \\ & (0.027,0.031) \end{aligned}$ | $\begin{aligned} & 0.097 \\ & (0.091,0.104) \end{aligned}$ | $\begin{aligned} & -0.003 \\ & (-0.008,0.003) \end{aligned}$ | $\begin{aligned} & 0.027 \\ & (0.025,0.029) \end{aligned}$ | $\begin{aligned} & 0.048 \\ & (0.044, .052) \end{aligned}$ |
| 0.950 | $\begin{aligned} & 0.033 \\ & (0.026,0.041) \end{aligned}$ | $\begin{aligned} & 0.028 \\ & (0.026,0.030) \end{aligned}$ | $\begin{aligned} & 0.102 \\ & (0.095,0.109) \end{aligned}$ | $\begin{aligned} & 0.001 \\ & (-0.006,0.009) \end{aligned}$ | $\begin{aligned} & 0.027 \\ & (0.024,0.030) \end{aligned}$ | $\begin{aligned} & 0.050 \\ & (0.045, .055) \end{aligned}$ |
| 0.975 | $\begin{aligned} & 0.040 \\ & (0.031,0.049) \end{aligned}$ | $\begin{aligned} & 0.027 \\ & (0.025,0.029) \end{aligned}$ | $\begin{aligned} & 0.106 \\ & (0.098,0.114) \end{aligned}$ | $\begin{aligned} & 0.004 \\ & (-0.003,0.011) \end{aligned}$ | $\begin{aligned} & 0.026 \\ & (0.023,0.029) \end{aligned}$ | $\begin{aligned} & 0.051 \\ & (0.045, .056) \end{aligned}$ |
| 1.000 | $\begin{aligned} & 0.042 \\ & (0.031,0.054) \end{aligned}$ | $\begin{aligned} & 0.026 \\ & (0.023,0.028) \end{aligned}$ | $\begin{aligned} & 0.110 \\ & (0.099,0.120) \end{aligned}$ | $\begin{aligned} & 0.004 \\ & (-0.007,0.015) \\ & \hline \end{aligned}$ | $\begin{aligned} & 0.025 \\ & (0.022,0.028) \end{aligned}$ | $\begin{aligned} & 0.051 \\ & (0.043, .057) \\ & \hline \end{aligned}$ |

Table A8 continued

| Percentile | Plot migrant head |  |  | Plot manager |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Endowment effect | Men's structural advantage | Women's structural disadvantage | Endowment effect | Men's structural advantage | Women's structural disadvantage |
| 0.025 | $\begin{aligned} & -0.012 \\ & (-0.022,0.002) \end{aligned}$ | $\begin{aligned} & -0.004 \\ & (-0.008,0.001) \end{aligned}$ | $\begin{aligned} & -0.005 \\ & (-0.012,0.001) \end{aligned}$ | $\begin{aligned} & -0.001 \\ & (-0.013,0.010) \end{aligned}$ | $\begin{aligned} & -0.021 \\ & (-0.027,0.016) \end{aligned}$ | $\begin{aligned} & -0.018 \\ & (-0.022,0.014) \end{aligned}$ |
| 0.050 | $\begin{aligned} & -0.007 \\ & (-0.014,0.001) \\ & \hline \end{aligned}$ | $\begin{aligned} & -0.003 \\ & (-0.007,0.001) \end{aligned}$ | $\begin{aligned} & -0.004 \\ & (-0.010,0.001) \\ & \hline \end{aligned}$ | $\begin{aligned} & -0.007 \\ & (-0.016,0.012) \end{aligned}$ | $\begin{aligned} & -0.020 \\ & (-0.025,0.016) \end{aligned}$ | $\begin{aligned} & -0.017 \\ & (-0.020,0.013) \end{aligned}$ |
| 0.075 | $\begin{aligned} & -0.004 \\ & (-0.010,0.002) \\ & \hline \end{aligned}$ | $\begin{aligned} & -0.001 \\ & (-0.005,0.002) \end{aligned}$ | $\begin{aligned} & -0.002 \\ & (-0.007,0.003) \end{aligned}$ | $\begin{aligned} & -0.010 \\ & (-0.016,-0.003) \end{aligned}$ | $\begin{aligned} & -0.019 \\ & (-0.024,0.014) \end{aligned}$ | $\begin{aligned} & -0.015 \\ & (-0.019,0.011) \end{aligned}$ |
| 0.100 | $\begin{aligned} & -0.005 \\ & (-0.010,0.001) \\ & \hline \end{aligned}$ | $\begin{aligned} & 0.001 \\ & (-0.002,0.004) \\ & (0) \end{aligned}$ | $\begin{aligned} & 0.001 \\ & (-0.003,0.006) \end{aligned}$ | $\begin{aligned} & -0.008 \\ & (-0.013,-0.002) \end{aligned}$ | $\begin{aligned} & -0.017 \\ & (-0.020,0.013) \end{aligned}$ | $\begin{aligned} & -0.013 \\ & (-0.016,0.010) \end{aligned}$ |
| 0.125 | $\begin{aligned} & -0.007 \\ & (-0.012,0.003) \\ & (0) \end{aligned}$ | $\begin{aligned} & 0.004 \\ & (0.002,0.007) \end{aligned}$ | $\begin{aligned} & 0.007 \\ & (0.003,0.010) \end{aligned}$ | $\begin{aligned} & -0.004 \\ & (-0.009,0.001) \end{aligned}$ | $\begin{aligned} & -0.013 \\ & (-0.017,0.010) \end{aligned}$ | $\begin{aligned} & -0.010 \\ & (-0.013,-0.007) \end{aligned}$ |
| 0.150 | $\begin{aligned} & -0.011 \\ & (-0.015,0.007) \end{aligned}$ | $\begin{aligned} & 0.009 \\ & (0.006,0.011) \end{aligned}$ | $\begin{aligned} & 0.013 \\ & (0.010,0.017) \end{aligned}$ | $\begin{aligned} & 0.001 \\ & (-0.003,0.005) \end{aligned}$ | $\begin{aligned} & -0.009 \\ & (-0.012,-0.006) \end{aligned}$ | $\begin{aligned} & -0.007 \\ & (-0.009,0.004) \end{aligned}$ |
| 0.175 | $\begin{aligned} & -0.014 \\ & (-0.018,0.010) \end{aligned}$ | $\begin{aligned} & 0.012 \\ & (0.011,0.014) \end{aligned}$ | $\begin{aligned} & 0.019 \\ & (0.017,0.022) \end{aligned}$ | $\begin{aligned} & 0.005 \\ & (0.002,0.009) \end{aligned}$ | $\begin{aligned} & -0.004 \\ & (-0.007,-0.002) \end{aligned}$ | $\begin{aligned} & -0.003 \\ & (-0.005,0.001) \end{aligned}$ |
| 0.200 | $\begin{aligned} & -0.015 \\ & (-0.017,0.012) \end{aligned}$ | $\begin{aligned} & 0.015 \\ & (0.014,0.017) \end{aligned}$ | $\begin{aligned} & 0.024 \\ & (0.022,0.027) \end{aligned}$ | $\begin{aligned} & 0.008 \\ & (0.005,0.012) \end{aligned}$ | $\begin{aligned} & -0.001 \\ & (-0.004,0.001) \end{aligned}$ | $\begin{aligned} & -0.001 \\ & (-0.003,0.001) \end{aligned}$ |
| 0.225 | $\begin{aligned} & -0.014 \\ & (-0.016,0.012) \end{aligned}$ | $\begin{aligned} & 0.016 \\ & (0.014,0.017) \end{aligned}$ | $\begin{aligned} & 0.026 \\ & (0.023,0.028) \end{aligned}$ | $\begin{aligned} & 0.011 \\ & (0.008,0.014) \end{aligned}$ | $\begin{aligned} & -0.001 \\ & (-0.003,0.001) \end{aligned}$ | $\begin{aligned} & -0.001 \\ & (-0.002,0.001) \end{aligned}$ |
| 0.250 | $\begin{aligned} & -0.013 \\ & (-0.015,0.010) \end{aligned}$ | $\begin{aligned} & 0.014 \\ & (0.013,0.016) \end{aligned}$ | $\begin{aligned} & 0.024 \\ & (0.022,0.027) \end{aligned}$ | $\begin{aligned} & 0.014 \\ & (0.012,0.016) \end{aligned}$ | $\begin{aligned} & -0.002 \\ & (-0.004, .0002) \end{aligned}$ | $\begin{aligned} & -0.002 \\ & (-0.003,0.0001) \end{aligned}$ |
| 0.275 | $\begin{aligned} & -0.012 \\ & (-0.014,0.010) \end{aligned}$ | $\begin{aligned} & 0.012 \\ & (0.011,0.013) \end{aligned}$ | $\begin{aligned} & 0.020 \\ & (0.018,0.022) \end{aligned}$ | $\begin{aligned} & 0.017 \\ & (0.014,0.019) \end{aligned}$ | $\begin{aligned} & -0.004 \\ & (-0.006,0.003) \end{aligned}$ | $\begin{aligned} & -0.003 \\ & (-0.005,0.002) \end{aligned}$ |
| 0.300 | $\begin{aligned} & -0.013 \\ & (-0.015,0.010) \end{aligned}$ | $\begin{aligned} & 0.008 \\ & (0.007,0.009) \end{aligned}$ | $\begin{aligned} & 0.015 \\ & (0.013,0.017) \end{aligned}$ | $\begin{aligned} & 0.019 \\ & (0.017,0.022) \end{aligned}$ | $\begin{aligned} & -0.006 \\ & (-0.008,0.005) \end{aligned}$ | $\begin{aligned} & -0.005 \\ & (-0.006,0.004) \end{aligned}$ |
| 0.325 | $\begin{aligned} & -0.013 \\ & (-0.015,0.011 \\ & ) \end{aligned}$ | $\begin{aligned} & 0.005 \\ & (0.004,0.006) \end{aligned}$ | $\begin{aligned} & 0.008 \\ & (0.006,0.010) \end{aligned}$ | $\begin{aligned} & 0.022 \\ & (0.020,0.024) \end{aligned}$ | $\begin{aligned} & -0.008 \\ & (-0.009,0.001) \end{aligned}$ | $\begin{aligned} & -0.006 \\ & (-0.008,0.005) \end{aligned}$ |
| 0.350 | $\begin{aligned} & -0.013 \\ & (-0.015,-0.011) \end{aligned}$ | $\begin{aligned} & 0.001 \\ & (0.0003,0.002) \end{aligned}$ | $\begin{aligned} & 0.002 \\ & (0.0005,0.004) \end{aligned}$ | $\begin{aligned} & 0.024 \\ & (0.022,0.026) \end{aligned}$ | $\begin{aligned} & -0.009 \\ & (-0.010,0.007) \end{aligned}$ | $\begin{aligned} & -0.007 \\ & (-0.008,0.006) \end{aligned}$ |
| 0.375 | $\begin{aligned} & -0.012 \\ & (-0.014,0.010) \end{aligned}$ | $\begin{aligned} & -0.002 \\ & (-0.003,0.001) \end{aligned}$ | $\begin{aligned} & -0.003 \\ & (-0.004,0.001) \\ & \hline \end{aligned}$ | $\begin{aligned} & 0.026 \\ & (0.025,0.028) \end{aligned}$ | $\begin{aligned} & -0.010 \\ & (-0.011,0.008) \end{aligned}$ | $\begin{aligned} & -0.008 \\ & (-0.009,0.007) \end{aligned}$ |
| 0.400 | $\begin{aligned} & -0.012 \\ & (-0.014,0.010) \\ & \hline \end{aligned}$ | $\begin{aligned} & -0.004 \\ & (-0.005,0.003) \end{aligned}$ | $\begin{aligned} & -0.006 \\ & (-0.008,0.005) \end{aligned}$ | $\begin{aligned} & 0.028 \\ & (0.026,0.030) \end{aligned}$ | $\begin{aligned} & -0.010 \\ & (-0.012,0.009) \end{aligned}$ | $\begin{aligned} & -0.009 \\ & (-0.010,0.008) \end{aligned}$ |
| 0.425 | $\begin{aligned} & -0.012 \\ & (-0.013,0.010) \\ & \hline \end{aligned}$ | $\begin{aligned} & -0.005 \\ & (-0.006,0.005) \end{aligned}$ | $\begin{aligned} & -0.009 \\ & (-0.010,0.007) \end{aligned}$ | $\begin{aligned} & 0.029 \\ & (0.027,0.030) \end{aligned}$ | $\begin{aligned} & -0.011 \\ & (-0.013,0.010) \end{aligned}$ | $\begin{aligned} & -0.010 \\ & (-0.011,0.009) \end{aligned}$ |
| 0.450 | $\begin{aligned} & -0.011 \\ & (-0.012,-0.009) \end{aligned}$ | $\begin{aligned} & -0.007 \\ & (-0.007,0.006) \end{aligned}$ | $\begin{aligned} & -0.010 \\ & (-0.011,0.009) \end{aligned}$ | $\begin{aligned} & 0.027 \\ & (0.026,0.029) \end{aligned}$ | $\begin{aligned} & -0.012 \\ & (-0.013,0.010) \end{aligned}$ | $\begin{aligned} & -0.010 \\ & (-0.011,0.009) \end{aligned}$ |
| 0.475 | $\begin{aligned} & -0.009 \\ & (-0.011,0.008) \end{aligned}$ | $\begin{aligned} & -0.007 \\ & (-0.008,0.006) \end{aligned}$ | $\begin{aligned} & -0.011 \\ & (-0.012,0.009) \end{aligned}$ | $\begin{aligned} & 0.025 \\ & (0.023,0.027) \end{aligned}$ | $\begin{aligned} & -0.011 \\ & (-0.012,0.010) \end{aligned}$ | $\begin{aligned} & -0.010 \\ & (-0.011,0.009) \end{aligned}$ |
| 0.500 | $\begin{aligned} & -0.007 \\ & (-0.009,-0.005) \end{aligned}$ | $\begin{aligned} & -0.007 \\ & (-0.008,0.006) \end{aligned}$ | $\begin{aligned} & -0.010 \\ & (-0.011,0.008) \end{aligned}$ | $\begin{aligned} & 0.022 \\ & (0.020,0.024) \end{aligned}$ | $\begin{aligned} & -0.011 \\ & (-0.012,0.010) \end{aligned}$ | $\begin{aligned} & -0.009 \\ & (-0.010,0.008) \end{aligned}$ |
| 0.525 | $\begin{aligned} & -0.004 \\ & (-0.006,0.002) \\ & \hline \end{aligned}$ | $\begin{aligned} & -0.005 \\ & (-0.006,0.004) \end{aligned}$ | $\begin{aligned} & -0.007 \\ & (-0.008,0.006) \end{aligned}$ | $\begin{aligned} & 0.019 \\ & (0.018,0.021) \end{aligned}$ | $\begin{aligned} & -0.011 \\ & (-0.012,0.010) \end{aligned}$ | $\begin{aligned} & -0.009 \\ & (-0.010,0.009) \end{aligned}$ |
| 0.550 | $\begin{aligned} & -0.0002 \\ & (-0.002,0.002) \end{aligned}$ | $\begin{aligned} & -0.002 \\ & (-0.003,0.002) \end{aligned}$ | $\begin{aligned} & -0.003 \\ & (-0.005,0.002) \end{aligned}$ | $\begin{aligned} & 0.016 \\ & (0.014,0.018) \end{aligned}$ | $\begin{aligned} & -0.012 \\ & (-0.013,-0.010) \end{aligned}$ | $\begin{aligned} & -0.010 \\ & (-0.011,-0.009) \end{aligned}$ |
| 0.575 | $\begin{aligned} & 0.004 \\ & (0.002,0.006) \end{aligned}$ | $\begin{aligned} & 0.0003 \\ & (-0.001,0.001) \end{aligned}$ | $\begin{aligned} & 0.0004 \\ & (-0.001,0.002) \end{aligned}$ | $\begin{aligned} & 0.011 \\ & (0.009,0.013) \end{aligned}$ | $\begin{aligned} & -0.012 \\ & (-0.014,0.011) \end{aligned}$ | $\begin{aligned} & -0.011 \\ & (-0.012,0.010) \end{aligned}$ |
| 0.600 | $\begin{aligned} & 0.008 \\ & (0.006,0.010) \end{aligned}$ | $\begin{aligned} & 0.003 \\ & (0.002,0.004) \end{aligned}$ | $\begin{aligned} & 0.004 \\ & (0.003,0.005) \end{aligned}$ | $\begin{aligned} & 0.004 \\ & (0.003,0.006) \end{aligned}$ | $\begin{aligned} & -0.013 \\ & (-0.014,0.012) \end{aligned}$ | $\begin{aligned} & -0.011 \\ & (-0.012,0.010) \end{aligned}$ |
| 0.625 | $\begin{aligned} & 0.010 \\ & (0.009,0.012) \end{aligned}$ | $\begin{aligned} & 0.004 \\ & (0.004,0.005) \end{aligned}$ | $\begin{aligned} & 0.006 \\ & (0.005,0.008) \end{aligned}$ | $\begin{aligned} & -0.002 \\ & (-0.004,0.0003) \end{aligned}$ | $\begin{aligned} & -0.013 \\ & (-0.014,0.012) \end{aligned}$ | $\begin{aligned} & -0.010 \\ & (-0.011,-0.009) \end{aligned}$ |
| 0.650 | $\begin{aligned} & 0.012 \\ & (0.010,0.014) \end{aligned}$ | $\begin{aligned} & 0.005 \\ & (0.004,0.006) \end{aligned}$ | $\begin{aligned} & 0.008 \\ & (0.006,0.009) \end{aligned}$ | $\begin{aligned} & -0.007 \\ & (-0.009,-0.005) \end{aligned}$ | $\begin{aligned} & -0.012 \\ & (-0.013,0.011) \end{aligned}$ | $\begin{aligned} & -0.009 \\ & (-0.010,0.008) \end{aligned}$ |
| 0.675 | $\begin{aligned} & 0.012 \\ & (0.010,0.014) \end{aligned}$ | $\begin{aligned} & 0.005 \\ & (0.004,0.006) \end{aligned}$ | $\begin{aligned} & 0.008 \\ & (0.006,0.009) \end{aligned}$ | $\begin{aligned} & -0.009 \\ & (-0.010,-0.007) \end{aligned}$ | $\begin{aligned} & -0.011 \\ & (-0.013,0.010) \end{aligned}$ | $\begin{aligned} & -0.008 \\ & (-0.009,-0.007) \end{aligned}$ |
| 0.700 | $\begin{aligned} & 0.011 \\ & (0.009,0.013) \\ & \hline \end{aligned}$ | $\begin{aligned} & 0.004 \\ & (0.003,0.005) \\ & \hline \end{aligned}$ | $\begin{aligned} & 0.007 \\ & (0.005,0.008) \\ & \hline \end{aligned}$ | $\begin{aligned} & -0.007 \\ & (-0.008,-0.005) \\ & \hline \end{aligned}$ | $\begin{aligned} & -0.011 \\ & (-0.012,0.010) \\ & \hline \end{aligned}$ | $\begin{aligned} & -0.008 \\ & (-0.009,0.007) \\ & \hline \end{aligned}$ |

Table A8 continued
I) Sahel

| Percentile | Plot migrant head |  |  | Plot manager |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Endowment effect | Men's structural advantage | Women's structural disadvantage | Endowment effect | Men's structural advantage | Women's structural disadvantage |
| 0.725 | $\begin{aligned} & \hline 0.010 \\ & (0.008,0.012) \end{aligned}$ | $\begin{aligned} & 0.004 \\ & (0.003,0.005) \end{aligned}$ | $\begin{aligned} & 0.006 \\ & (0.004,0.007) \end{aligned}$ | $\begin{aligned} & \hline-0.002 \\ & (-0.004, .00002) \end{aligned}$ | $\begin{aligned} & -0.011 \\ & (-0.013,0.010) \end{aligned}$ | $\begin{aligned} & \hline-0.008 \\ & (-0.009,0.007) \end{aligned}$ |
| 0.750 | $\begin{aligned} & 0.008 \\ & (0.006,0.010) \end{aligned}$ | $\begin{aligned} & 0.004 \\ & (0.003,0.005) \end{aligned}$ | $\begin{aligned} & 0.006 \\ & (0.005,0.008) \end{aligned}$ | $\begin{aligned} & 0.004 \\ & (0.002,0.006) \end{aligned}$ | $\begin{aligned} & -0.013 \\ & (-0.014,0.012) \end{aligned}$ | $\begin{aligned} & -0.009 \\ & (-0.010,0.008) \end{aligned}$ |
| 0.775 | $\begin{aligned} & 0.005 \\ & (0.003,0.007) \end{aligned}$ | $\begin{aligned} & 0.005 \\ & (0.004,0.006) \end{aligned}$ | $\begin{aligned} & 0.009 \\ & (0.007,0.010) \end{aligned}$ | $\begin{aligned} & 0.009 \\ & (0.007,0.011) \end{aligned}$ | $\begin{aligned} & -0.016 \\ & (-0.018,0.015) \end{aligned}$ | $\begin{aligned} & -0.011 \\ & (-0.012,0.010) \end{aligned}$ |
| 0.800 | $\begin{aligned} & 0.001 \\ & (-0.001,0.002) \end{aligned}$ | $\begin{aligned} & 0.008 \\ & (0.007,0.009) \end{aligned}$ | $\begin{aligned} & 0.013 \\ & (0.012,0.015) \end{aligned}$ | $\begin{aligned} & 0.012 \\ & (0.010,0.014) \end{aligned}$ | $\begin{aligned} & -0.021 \\ & (-0.023,0.019) \end{aligned}$ | $\begin{aligned} & -0.014 \\ & (-0.015,0.013) \end{aligned}$ |
| 0.825 | $\begin{aligned} & -0.003 \\ & (-0.005,-0.001) \end{aligned}$ | $\begin{aligned} & 0.011 \\ & (0.010,0.012) \end{aligned}$ | $\begin{aligned} & 0.020 \\ & (0.017,0.022) \end{aligned}$ | $\begin{aligned} & 0.013 \\ & (0.010,0.016) \end{aligned}$ | $\begin{aligned} & -0.027 \\ & (-0.029,0.025) \end{aligned}$ | $\begin{aligned} & -0.017 \\ & (-0.019,0.016) \end{aligned}$ |
| 0.850 | $\begin{aligned} & -0.005 \\ & (-0.007,0.002) \end{aligned}$ | $\begin{aligned} & 0.014 \\ & (0.013,0.016) \end{aligned}$ | $\begin{aligned} & 0.026 \\ & (0.023,0.028) \end{aligned}$ | $\begin{aligned} & 0.011 \\ & (0.009,0.014) \end{aligned}$ | $\begin{aligned} & -0.034 \\ & (-0.037,0.032) \end{aligned}$ | $\begin{aligned} & -0.021 \\ & (-0.023,0.020) \end{aligned}$ |
| 0.875 | $\begin{aligned} & -0.004 \\ & (-0.007,0.001) \end{aligned}$ | $\begin{aligned} & 0.016 \\ & (0.014,0.018) \end{aligned}$ | $\begin{aligned} & 0.030 \\ & (0.027,0.033) \end{aligned}$ | $\begin{aligned} & 0.006 \\ & (0.003,0.010) \end{aligned}$ | $\begin{aligned} & -0.041 \\ & (-0.044,0.038) \end{aligned}$ | $\begin{aligned} & -0.025 \\ & (-0.027,0.023) \end{aligned}$ |
| 0.900 | $\begin{aligned} & -0.002 \\ & (-0.007,0.003) \end{aligned}$ | $\begin{aligned} & 0.017 \\ & (0.015,0.018) \end{aligned}$ | $\begin{aligned} & 0.032 \\ & (0.029,0.036) \end{aligned}$ | $\begin{aligned} & -0.003 \\ & (-0.007,0.001) \end{aligned}$ | $\begin{aligned} & -0.046 \\ & (-0.050,0.043) \end{aligned}$ | $\begin{aligned} & -0.027 \\ & (-0.029,0.025) \end{aligned}$ |
| 0.925 | $\begin{aligned} & 0.001 \\ & (-0.006,0.007) \end{aligned}$ | $\begin{aligned} & 0.016 \\ & (0.014,0.018) \end{aligned}$ | $\begin{aligned} & 0.032 \\ & (0.028,0.036) \end{aligned}$ | $\begin{aligned} & -0.016 \\ & (-0.023,-0.010) \end{aligned}$ | $\begin{aligned} & -0.047 \\ & (-0.052,0.042) \end{aligned}$ | $\begin{aligned} & -0.026 \\ & (-0.029,0.023) \end{aligned}$ |
| 0.950 | $\begin{aligned} & 0.001 \\ & (-0.009,0.011) \end{aligned}$ | $\begin{aligned} & 0.014 \\ & (0.012,0.016) \end{aligned}$ | $\begin{aligned} & 0.030 \\ & (0.025,0.034) \end{aligned}$ | $\begin{aligned} & -0.033 \\ & (-0.040,-0.025) \end{aligned}$ | $\begin{aligned} & -0.044 \\ & (-0.050,0.038) \end{aligned}$ | $\begin{aligned} & -0.023 \\ & (-0.026,0.020) \end{aligned}$ |
| 0.975 | $\begin{aligned} & -0.0002 \\ & (-0.012,0.012) \end{aligned}$ | $\begin{aligned} & 0.012 \\ & (0.009,0.014) \end{aligned}$ | $\begin{aligned} & 0.026 \\ & (0.020,0.031) \end{aligned}$ | $\begin{aligned} & -0.049 \\ & (-0.059,-0.039) \end{aligned}$ | $\begin{aligned} & -0.037 \\ & (-0.045,0.029) \end{aligned}$ | $\begin{aligned} & -0.018 \\ & (-0.022,0.014) \end{aligned}$ |
| 1.000 | $\begin{aligned} & -0.004 \\ & (-0.018,0.010) \end{aligned}$ | $\begin{aligned} & 0.009 \\ & (0.006,0.012) \end{aligned}$ | $\begin{aligned} & 0.021 \\ & (0.014,0.027) \end{aligned}$ | $\begin{aligned} & -0.064 \\ & (-0.075,-0.054) \\ & \hline \end{aligned}$ | $\begin{aligned} & -0.027 \\ & (-0.035,0.018) \end{aligned}$ | $\begin{aligned} & -0.012 \\ & (-0.016,0.009) \end{aligned}$ |
| Percentile | Plot owner |  |  |  |  |  |
|  | Endowment effect |  | Men's structural advantage |  | Women's structural disadvantage |  |
| 0.025 | $\begin{aligned} & \hline 0.007 \\ & (-0.005,0.020) \end{aligned}$ |  | 0.007  <br> $(0.002,0.011)$ 0.0 <br> 0.00  |  | $0.009$ |  |
| 0.050 | -0.009 |  | 0.008 0.00 |  | (0.005, 0.015) |  |
| 0.075 | $\begin{aligned} & -0.026 \\ & (-0.036,-0.016) \end{aligned}$ |  | $(0.007,0.014)$ |  | (0.009, 0.018) |  |
| 0.100 | $(-0.046,-0.031)$ |  | (0.011, 0.018) |  | (0.014, 0.022) |  |
| 0.125 | $(-0.052,-0.040)$ |  | (0.015, 0.021) (0.01) |  | (0.019, 0.026) |  |
| 0.150 | $(-0.052,-0.041)$ |  | (0.017, 0.023) |  | (0.021, 0.029) |  |
| 0.175 | $(-0.045,-0.035)$ |  | $(0.017,0.023)$ |  | (0.021, 0.028) |  |
| 0.200 | $(-0.034,-0.026)$ |  | $\begin{array}{ll} 0.018 & 0 . \\ (0.016,0.020) & 10 \end{array}$ |  | (0.019, 0.025) |  |
| 0.225 | $(-0.023,-0.017)$ |  | 0.014$(0.012,0.016)$ |  | 0.018 $(0.015,0.020)$ |  |
| 0.250 | $\begin{aligned} & -0.012 \\ & (-0.015,-0.008) \end{aligned}$ |  | $0.010$ |  | 1, 0.015) |  |
| 0.275 | $(-0.010,-0.003)$ |  | (0.005, 0.008) (0.00 |  | (0.006, 0.010) |  |
| 0.300 | $\begin{aligned} & -0.004 \\ & (-0.007,-0.001) \end{aligned}$ |  | $\begin{array}{ll} 0.004 & 0 \\ (0.002,0.005) \end{array}$ |  | $0.004$ |  |
| 0.325 | $(-0.006,0.0004)$ |  |  | (0.001, 0.004) (0.00 | 0.001, 0.005) |  |
| 0.350 | -0.001 |  | 0.002 |   <br>  0.003 | (0.001, 0.005) |  |

Table A8 continued
I) Sahel

| Percentile | Plot owner |  |  |
| :---: | :---: | :---: | :---: |
|  | Endowment effect | Men's structural advantage | Women's structural disadvantage |
| 0.375 | $\begin{aligned} & -0.001 \\ & (-0.003,0.002) \end{aligned}$ | $\begin{aligned} & \hline 0.003 \\ & (0.001,0.004) \end{aligned}$ | $\begin{aligned} & \hline 0.003 \\ & (0.002,0.005) \end{aligned}$ |
| 0.400 | $\begin{aligned} & -0.001 \\ & (-0.003,0.001) \end{aligned}$ | $\begin{aligned} & 0.003 \\ & (0.002,0.005) \end{aligned}$ | $\begin{aligned} & 0.005 \\ & (0.003,0.006) \end{aligned}$ |
| 0.425 | $\begin{aligned} & -0.002 \\ & (-0.004,-0.001) \end{aligned}$ | $\begin{aligned} & 0.004 \\ & (0.003,0.005) \end{aligned}$ | $\begin{aligned} & 0.006 \\ & (0.004,0.007) \end{aligned}$ |
| 0.450 | $\begin{aligned} & -0.005 \\ & (-0.006,-0.003) \end{aligned}$ | $\begin{aligned} & 0.004 \\ & (0.003,0.005) \end{aligned}$ | $\begin{aligned} & 0.006 \\ & (0.005,0.007) \end{aligned}$ |
| 0.475 | $\begin{aligned} & -0.007 \\ & (-0.008,-0.006) \end{aligned}$ | $\begin{aligned} & 0.004 \\ & (0.003,0.005) \end{aligned}$ | $\begin{aligned} & 0.005 \\ & (0.004,0.006) \end{aligned}$ |
| 0.500 | $\begin{aligned} & -0.008 \\ & (-0.009,-0.007) \end{aligned}$ | $\begin{aligned} & 0.002 \\ & (0.001,0.003) \end{aligned}$ | $\begin{aligned} & 0.003 \\ & (0.002,0.004) \end{aligned}$ |
| 0.525 | $\begin{aligned} & -0.007 \\ & (-0.009,-0.006) \end{aligned}$ | $\begin{aligned} & -0.0001 \\ & (-0.001,0.001) \end{aligned}$ | $\begin{aligned} & -0.0001 \\ & (-0.001,0.001) \end{aligned}$ |
| 0.550 | $\begin{aligned} & -0.005 \\ & (-0.007,-0.004) \end{aligned}$ | $\begin{aligned} & -0.002 \\ & (-0.003,-0.001) \end{aligned}$ | $\begin{aligned} & -0.003 \\ & (-0.004,-0.001) \end{aligned}$ |
| 0.575 | $\begin{aligned} & -0.004 \\ & (-0.005,-0.003) \end{aligned}$ | $\begin{aligned} & -0.003 \\ & (-0.004,-0.002) \end{aligned}$ | $\begin{aligned} & -0.004 \\ & (-0.005,-0.003) \end{aligned}$ |
| 0.600 | $\begin{aligned} & -0.003 \\ & (-0.005,-0.002) \end{aligned}$ | $\begin{aligned} & -0.003 \\ & (-0.004,-0.002) \end{aligned}$ | $\begin{aligned} & -0.004 \\ & (-0.004,-0.003) \end{aligned}$ |
| 0.625 | $\begin{aligned} & -0.004 \\ & (-0.005,-0.002) \end{aligned}$ | $\begin{aligned} & -0.002 \\ & (-0.002,-0.001) \end{aligned}$ | $\begin{aligned} & -0.002 \\ & (-0.003,-0.001) \end{aligned}$ |
| 0.650 | $\begin{aligned} & -0.004 \\ & (-0.006,-0.003) \end{aligned}$ | $\begin{aligned} & -0.0001 \\ & (-0.001,0.001) \end{aligned}$ | $\begin{aligned} & -0.0001 \\ & (-0.001,0.001) \\ & \hline \end{aligned}$ |
| 0.675 | $\begin{aligned} & -0.005 \\ & (-0.007,-0.004) \end{aligned}$ | $\begin{aligned} & 0.001 \\ & (0.001,0.002) \end{aligned}$ | $\begin{aligned} & 0.032 \\ & (0.001,0.003) \end{aligned}$ |
| 0.700 | $\begin{aligned} & -0.006 \\ & (-0.008,-0.005) \end{aligned}$ | $\begin{aligned} & 0.003 \\ & (0.002,0.004) \end{aligned}$ | $\begin{aligned} & 0.003 \\ & (0.003,0.004) \end{aligned}$ |
| 0.725 | $\begin{aligned} & -0.007 \\ & (-0.008,-0.005) \end{aligned}$ | $\begin{aligned} & 0.004 \\ & (0.003,0.005) \end{aligned}$ | $\begin{aligned} & 0.005 \\ & (0.004,0.006) \end{aligned}$ |
| 0.750 | $\begin{aligned} & -0.007 \\ & (-0.009,-0.006) \end{aligned}$ | $\begin{aligned} & 0.006 \\ & (0.005,0.007) \end{aligned}$ | $\begin{aligned} & 0.007 \\ & (0.006,0.008) \end{aligned}$ |
| 0.775 | $\begin{aligned} & -0.007 \\ & (-0.008,-0.005) \end{aligned}$ | $\begin{aligned} & 0.007 \\ & (0.006,0.008) \end{aligned}$ | $\begin{aligned} & 0.009 \\ & (0.008,0.010) \end{aligned}$ |
| 0.800 | $\begin{aligned} & -0.005 \\ & (-0.007,-0.004) \end{aligned}$ | $\begin{aligned} & 0.009 \\ & (0.008,0.010) \end{aligned}$ | $\begin{aligned} & 0.011 \\ & (0.010,0.013) \end{aligned}$ |
| 0.825 | $\begin{aligned} & -0.001 \\ & (-0.003,0.001) \\ & \hline \end{aligned}$ | $\begin{aligned} & 0.011 \\ & (0.010,0.012) \end{aligned}$ | $\begin{aligned} & 0.014 \\ & (0.012,0.015) \end{aligned}$ |
| 0.850 | $\begin{aligned} & 0.007 \\ & (0.005,0.010) \end{aligned}$ | $\begin{aligned} & 0.013 \\ & (0.012,0.015) \end{aligned}$ | $\begin{aligned} & 0.017 \\ & (0.015,0.018) \end{aligned}$ |
| 0.875 | $\begin{aligned} & 0.018 \\ & (0.015,0.022) \end{aligned}$ | $\begin{aligned} & 0.016 \\ & (0.014,0.017) \end{aligned}$ | $\begin{aligned} & 0.020 \\ & (0.018,0.022) \end{aligned}$ |
| 0.900 | $\begin{aligned} & 0.033 \\ & (0.028,0.037) \end{aligned}$ | $\begin{aligned} & 0.018 \\ & (0.016,0.020) \end{aligned}$ | $\begin{aligned} & 0.024 \\ & (0.021,0.026) \end{aligned}$ |
| 0.925 | $\begin{aligned} & 0.050 \\ & (0.043,0.056) \end{aligned}$ | $\begin{aligned} & 0.020 \\ & (0.018,0.022) \end{aligned}$ | $\begin{aligned} & 0.027 \\ & (0.024,0.030) \end{aligned}$ |
| 0.950 | $\begin{aligned} & 0.068 \\ & (0.061,0.075) \end{aligned}$ | $\begin{aligned} & 0.021 \\ & (0.019,0.024) \end{aligned}$ | $\begin{aligned} & 0.030 \\ & (0.027,0.034) \end{aligned}$ |
| 0.975 | $\begin{aligned} & 0.085 \\ & (0.078,0.093) \end{aligned}$ | $\begin{aligned} & 0.022 \\ & (0.020,0.025) \end{aligned}$ | $\begin{aligned} & 0.033 \\ & (0.030,0.037) \end{aligned}$ |
| 1.000 | $\begin{aligned} & 0.103 \\ & (0.093,0.113) \\ & \hline \end{aligned}$ | $\begin{aligned} & 0.023 \\ & (0.021,0.025) \\ & \hline \end{aligned}$ | $\begin{aligned} & 0.036 \\ & (0.032,0.040) \\ & \hline \end{aligned}$ |

Table A8 continued
II) Western Highlands

| Percentile | Plot head |  |  | Plot de jure head |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Endowment effect | Men's structural advantage | Women's structural disadvantage | Endowment effect | Men's structural advantage | Women's structural disadvantage |
| 0.025 | $\begin{aligned} & 0.007 \\ & (-0.005,0.020) \end{aligned}$ | $\begin{aligned} & 0.007 \\ & (0.002,0.011) \end{aligned}$ | $\begin{aligned} & 0.009 \\ & (0.003,0.014) \end{aligned}$ | $\begin{aligned} & \hline-0.087 \\ & (-0.099,-0.076) \end{aligned}$ | $\begin{aligned} & 0.008 \\ & (0.004,0.012) \end{aligned}$ | $\begin{aligned} & 0.012 \\ & (0.006,0.018) \end{aligned}$ |
| 0.050 | $\begin{aligned} & -0.009 \\ & (-0.020,0.001) \end{aligned}$ | $\begin{aligned} & 0.008 \\ & (0.004,0.012) \end{aligned}$ | $\begin{aligned} & 0.010 \\ & (0.005,0.015) \end{aligned}$ | $\begin{aligned} & -0.084 \\ & (-0.093,-0.075) \end{aligned}$ | $\begin{aligned} & 0.008 \\ & (0.003,0.013) \end{aligned}$ | $\begin{aligned} & 0.011 \\ & (0.004,0.018) \end{aligned}$ |
| 0.075 | $\begin{aligned} & -0.026 \\ & (-0.036,0.016) \end{aligned}$ | $\begin{aligned} & 0.011 \\ & (0.007,0.014) \end{aligned}$ | $\begin{aligned} & 0.013 \\ & (0.009,0.018) \end{aligned}$ | $\begin{aligned} & -0.077 \\ & (-0.085,-0.069) \end{aligned}$ | $\begin{aligned} & 0.008 \\ & (0.003,0.012) \end{aligned}$ | $\begin{aligned} & 0.011 \\ & (0.004,0.017) \end{aligned}$ |
| 0.100 | $\begin{aligned} & -0.039 \\ & (-0.046,-0.031) \end{aligned}$ | $\begin{aligned} & 0.015 \\ & (0.011,0.018) \end{aligned}$ | $\begin{aligned} & 0.018 \\ & (0.014,0.022) \end{aligned}$ | $\begin{aligned} & -0.066 \\ & (-0.072,-0.060) \end{aligned}$ | $\begin{aligned} & 0.008 \\ & (0.004,0.011) \end{aligned}$ | $\begin{aligned} & 0.011 \\ & (0.006,0.016) \end{aligned}$ |
| 0.125 | $\begin{aligned} & -0.046 \\ & (-0.052,-0.040) \end{aligned}$ | $\begin{aligned} & 0.018 \\ & (0.015,0.021) \end{aligned}$ | $\begin{aligned} & 0.022 \\ & (0.019,0.026) \end{aligned}$ | $\begin{aligned} & -0.051 \\ & (-0.056,-0.046) \end{aligned}$ | $\begin{aligned} & 0.008 \\ & (0.005,0.011) \end{aligned}$ | $\begin{aligned} & 0.010 \\ & (0.006,0.015) \end{aligned}$ |
| 0.150 | $\begin{aligned} & -0.047 \\ & (-0.052,0.041) \end{aligned}$ | $\begin{aligned} & 0.020 \\ & (0.017,0.023) \end{aligned}$ | $\begin{aligned} & 0.025 \\ & (0.021,0.029) \end{aligned}$ | $\begin{aligned} & -0.033 \\ & (-0.038,-0.029) \end{aligned}$ | $\begin{aligned} & 0.007 \\ & (0.004,0.010) \end{aligned}$ | $\begin{aligned} & 0.009 \\ & (0.005,0.014) \end{aligned}$ |
| 0.175 | $\begin{aligned} & -0.040 \\ & (-0.045,-0.035) \end{aligned}$ | $\begin{aligned} & 0.020 \\ & (0.017,0.023) \end{aligned}$ | $\begin{aligned} & 0.025 \\ & (0.021,0.028) \end{aligned}$ | $\begin{aligned} & -0.015 \\ & (-0.019,-0.011) \end{aligned}$ | $\begin{aligned} & 0.005 \\ & (0.003,0.008) \end{aligned}$ | $\begin{aligned} & 0.007 \\ & (0.004,0.010) \end{aligned}$ |
| 0.200 | $\begin{aligned} & -0.030 \\ & (-0.034,-0.026) \end{aligned}$ | $\begin{aligned} & 0.018 \\ & (0.016,0.020) \end{aligned}$ | $\begin{aligned} & 0.022 \\ & (0.019,0.025) \end{aligned}$ | $\begin{aligned} & 0.001 \\ & (-0.003,0.004) \end{aligned}$ | $\begin{aligned} & 0.002 \\ & (-0.00002, \\ & 0.005) \end{aligned}$ | $\begin{aligned} & 0.003 \\ & (-0.00002,0.007) \end{aligned}$ |
| 0.225 | $\begin{aligned} & -0.020 \\ & (-0.023,-0.017) \end{aligned}$ | $\begin{aligned} & 0.014 \\ & (0.012,0.016) \end{aligned}$ | $\begin{aligned} & 0.018 \\ & (0.015,0.020) \end{aligned}$ | $\begin{aligned} & 0.011 \\ & (0.008,0.015) \end{aligned}$ | $\begin{aligned} & -0.001 \\ & (-0.003,0.001) \end{aligned}$ | $\begin{aligned} & -0.001 \\ & (-0.004,0.001) \end{aligned}$ |
| 0.250 | $\begin{aligned} & -0.012 \\ & (-0.015,-0.008) \end{aligned}$ | $\begin{aligned} & 0.010 \\ & (0.008,0.012) \end{aligned}$ | $\begin{aligned} & 0.013 \\ & (0.011,0.015) \end{aligned}$ | $\begin{aligned} & 0.017 \\ & (0.014,0.019) \end{aligned}$ | $\begin{aligned} & -0.004 \\ & (-0.006,-0.002) \end{aligned}$ | $\begin{aligned} & -0.006 \\ & (-0.008,-0.004) \end{aligned}$ |
| 0.275 | $\begin{aligned} & -0.007 \\ & (-0.010,-0.003) \end{aligned}$ | $\begin{aligned} & 0.006 \\ & (0.005,0.008) \end{aligned}$ | $\begin{aligned} & 0.008 \\ & (0.006,0.010) \end{aligned}$ | $\begin{aligned} & 0.017 \\ & (0.014,0.019) \end{aligned}$ | $\begin{aligned} & -0.007 \\ & (-0.009,-0.006) \end{aligned}$ | $\begin{aligned} & -0.010 \\ & (-0.013,-0.008) \end{aligned}$ |
| 0.300 | $\begin{aligned} & -0.004 \\ & (-0.007,-0.001) \end{aligned}$ | $\begin{aligned} & 0.004 \\ & (0.002,0.005) \end{aligned}$ | $\begin{aligned} & 0.005 \\ & (0.003,0.007) \end{aligned}$ | $\begin{aligned} & 0.014 \\ & (0.011,0.017) \end{aligned}$ | $\begin{aligned} & -0.009 \\ & (-0.011,-0.007) \end{aligned}$ | $\begin{aligned} & -0.013 \\ & (-0.015,-0.010) \end{aligned}$ |
| 0.325 | $\begin{aligned} & -0.003 \\ & (-0.006,0.0004) \end{aligned}$ | $\begin{aligned} & 0.002 \\ & (0.001,0.004) \end{aligned}$ | $\begin{aligned} & 0.003 \\ & (0.001,0.005) \end{aligned}$ | $\begin{aligned} & 0.012 \\ & (0.009,0.014) \end{aligned}$ | $\begin{aligned} & -0.010 \\ & (-0.011,-0.008) \end{aligned}$ | $\begin{aligned} & -0.013 \\ & (-0.015,-0.011) \end{aligned}$ |
| 0.350 | $\begin{aligned} & -0.001 \\ & (-0.004,0.001) \end{aligned}$ | $\begin{aligned} & 0.002 \\ & (0.001,0.004) \end{aligned}$ | $\begin{aligned} & 0.003 \\ & (0.001,0.005) \end{aligned}$ | $\begin{aligned} & 0.011 \\ & (0.009,0.013) \end{aligned}$ | $\begin{aligned} & -0.008 \\ & (-0.010,-0.007) \end{aligned}$ | $\begin{aligned} & -0.011 \\ & (-0.013,-0.010) \end{aligned}$ |
| 0.375 | $\begin{aligned} & -0.001 \\ & (-0.003,0.002) \end{aligned}$ | $\begin{aligned} & 0.003 \\ & (0.001,0.004) \end{aligned}$ | $\begin{aligned} & 0.003 \\ & (0.002,0.005) \end{aligned}$ | $\begin{aligned} & 0.010 \\ & (0.008,0.012) \end{aligned}$ | $\begin{aligned} & -0.006 \\ & (-0.007,-0.005) \end{aligned}$ | $\begin{aligned} & -0.008 \\ & (-0.010,-0.007) \end{aligned}$ |
| 0.400 | $\begin{aligned} & -0.001 \\ & (-0.003,0.001) \end{aligned}$ | $\begin{aligned} & 0.003 \\ & (0.002,0.005) \end{aligned}$ | $\begin{aligned} & 0.005 \\ & (0.003,0.006) \end{aligned}$ | $\begin{aligned} & 0.008 \\ & (0.006,0.010) \end{aligned}$ | $\begin{aligned} & -0.003 \\ & (-0.004,-0.002) \end{aligned}$ | $\begin{aligned} & -0.004 \\ & (-0.006,-0.003) \end{aligned}$ |
| 0.425 | $\begin{aligned} & -0.002 \\ & (-0.004,-0.001) \end{aligned}$ | $\begin{aligned} & 0.004 \\ & (0.003,0.005) \end{aligned}$ | $\begin{aligned} & 0.006 \\ & (0.004,0.007) \end{aligned}$ | $\begin{aligned} & 0.004 \\ & (0.003,0.006) \end{aligned}$ | $\begin{aligned} & 0.004 \\ & (-0.001,0.001) \end{aligned}$ | $\begin{aligned} & 0.001 \\ & (-0.001,0.002) \end{aligned}$ |
| 0.450 | $\begin{aligned} & -0.005 \\ & (-0.006,-0.003) \end{aligned}$ | $\begin{aligned} & 0.004 \\ & (0.003,0.005) \end{aligned}$ | $\begin{aligned} & 0.006 \\ & (0.005,0.007) \end{aligned}$ | $\begin{aligned} & -0.001 \\ & (-0.002,0.001) \end{aligned}$ | $\begin{aligned} & 0.004 \\ & (0.003,0.004) \end{aligned}$ | $\begin{aligned} & 0.005 \\ & (0.004,0.006) \end{aligned}$ |
| 0.475 | $\begin{aligned} & -0.007 \\ & (-0.008,-0.006) \end{aligned}$ | $\begin{aligned} & 0.004 \\ & (0.003,0.005) \end{aligned}$ | $\begin{aligned} & 0.005 \\ & (0.004,0.006) \end{aligned}$ | $\begin{aligned} & -0.005 \\ & (-0.007,-0.004) \end{aligned}$ | $\begin{aligned} & 0.006 \\ & (0.005,0.007) \end{aligned}$ | $\begin{aligned} & 0.008 \\ & (0.007,0.010) \end{aligned}$ |
| 0.500 | $\begin{aligned} & -0.008 \\ & (-0.009,-0.007) \end{aligned}$ | $\begin{aligned} & 0.002 \\ & (0.001,0.003) \end{aligned}$ | $\begin{aligned} & 0.003 \\ & (0.002,0.004) \end{aligned}$ | $\begin{aligned} & -0.008 \\ & (-0.010,-0.007) \end{aligned}$ | $\begin{aligned} & 0.007 \\ & (0.007,0.008) \end{aligned}$ | $\begin{aligned} & 0.011 \\ & (0.009,0.012) \end{aligned}$ |
| 0.525 | $\begin{aligned} & -0.007 \\ & (-0.009,-0.006) \end{aligned}$ | $\begin{aligned} & -0.0001 \\ & (-0.001,0.001) \end{aligned}$ | $\begin{aligned} & -0.0001 \\ & (-0.001,0.001) \end{aligned}$ | $\begin{aligned} & -0.009 \\ & (-0.011,-0.008) \end{aligned}$ | $\begin{aligned} & 0.008 \\ & (0.007,0.009) \end{aligned}$ | $\begin{aligned} & 0.012 \\ & (0.010,0.013) \end{aligned}$ |
| 0.550 | $\begin{aligned} & -0.005 \\ & (-0.007,-0.004) \end{aligned}$ | $\begin{aligned} & -0.002 \\ & (-0.003,-0.001) \end{aligned}$ | $\begin{aligned} & -0.003 \\ & (-0.004,-0.001) \end{aligned}$ | $\begin{aligned} & -0.009 \\ & (-0.010,-0.008) \end{aligned}$ | $\begin{aligned} & 0.008 \\ & (0.008,0.009) \end{aligned}$ | $\begin{aligned} & 0.012 \\ & (0.011,0.013) \end{aligned}$ |
| 0.575 | $\begin{aligned} & -0.004 \\ & (-0.005,-0.003) \\ & \hline \end{aligned}$ | $\begin{aligned} & -0.003 \\ & (-0.004,0.002) \\ & \hline \end{aligned}$ | $\begin{aligned} & -0.004 \\ & (-0.005,0.003) \\ & \hline \end{aligned}$ | $\begin{aligned} & -0.008 \\ & (-0.010,-0.007) \\ & \hline \end{aligned}$ | $\begin{aligned} & 0.008 \\ & (0.008,0.009) \\ & \hline \end{aligned}$ | $\begin{aligned} & 0.012 \\ & (0.011,0.013) \end{aligned}$ |

Table A8 continued
II) Western Highlands

| Percentile | Plot head |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | Endowment <br> effect | Men's <br> structural <br> advantage | Women's <br> structural <br> disadvantage | Endowment <br> effect | Men's <br> structural <br> advantage | Women's <br> structural <br> disadvantage |
| 0.600 | -0.003 | -0.003 | -0.004 | -0.009 | 0.008 | 0.012 |
|  | $(-0.005,-0.002)$ | $(-0.004,-0.002)$ | $(-0.004,0.003)$ | $(-0.010,-0.007)$ | $(0.007,0.009)$ | $(0.011, .013)$ |
| 0.625 | -0.004 | -0.002 | -0.002 | -0.010 | 0.007 | 0.012 |
| 0.650 | $(-0.005,-0.002)$ | $(-0.002,-0.001)$ | $(-0.003,-0.001)$ | $(-0.011,0.008)$ | $(0.007,0.008)$ | $(0.010, .013)$ |
|  | -0.004 | -0.0001 | -0.0001 | -0.012 | 0.007 | 0.011 |
| 0.675 | $(-0.006,-0.003)$ | $(-0.001,0.001)$ | $(-0.001,0.001)$ | $(-0.013,0.010)$ | $(0.006,0.008)$ | $(0.009, .012)$ |
|  | -0.005 | 0.001 | 0.002 | -0.014 | 0.006 | 0.009 |


|  | $(-0.007,-0.004)$ | $(0.001,0.002)$ | $(0.001,0.003)$ | $(-0.015,0.012)$ | $(0.005,0.006)$ | $(0.008, .010)$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0.700 | -0.006 | 0.003 | 0.003 | -0.014 | 0.004 | 0.007 |
|  | $(-0.008,-0.005)$ | $(0.002,0.004)$ | $(0.003,0.004)$ | $(-0.016,-0.013)$ | $(0.003,0.005)$ | $(0.005,0.008)$ |
| 0.725 | -0.007 | 0.004 | 0.005 | -0.013 | 0.002 | 0.004 |
|  | $(-0.008,-0.005)$ | $(0.003,0.005)$ | $(0.004,0.006)$ | $(-0.015,-0.012)$ | $(0.001,0.003)$ | $(0.002, .005)$ |
| 0.750 | -0.007 | 0.006 | 0.007 | -0.011 | 0.0002 | 0.0003 |
|  | $(-0.009,-0.006)$ | $(0.005,0.007)$ | $(0.006,0.008)$ | $(-0.012,0.010)$ | $(-0.001,0.001)$ | $(-0.001, .002)$ |
| 0.775 | -0.007 | 0.007 | 0.009 | -0.008 | -0.002 | -0.003 |
|  | $(-0.008,-0.005)$ | $(0.006,0.008)$ | $(0.008,0.010)$ | $(-0.010,0.007)$ | $(-0.003,-0.001)$ | $(-0.005,-0.002)$ |
| 0.800 | -0.005 | 0.009 | 0.011 | -0.005 | -0.004 | -0.007 |
|  | $(-0.007,-0.004)$ | $(0.008,0.010)$ | $(0.010,0.013)$ | $(-0.006,0.003)$ | $-0.005,-0.0031$ | $(-0.008,0.005)$ |
| 0.825 | -0.001 | 0.011 | 0.014 | -0.002 | -0.007 | -0.010 |
|  | $(-0.003,0.001)$ | $(0.010,0.012)$ | $(0.012,0.015)$ | $(-0.003,-$ | $(-0.008,-0.005)$ | $(-0.012,-0.008)$ |
|  |  |  |  | $0.0001)$ |  |  |
| 0.850 | 0.007 | 0.013 | 0.017 | 0.002 | -0.009 | -0.013 |
|  | $(0.005,0.010)$ | $(0.012,0.015)$ | $(0.015,0.018)$ | $(-0.0002, .004)$ | $(-0.011,0.008)$ | $(-0.015,0.011)$ |
| 0.875 | 0.018 | 0.016 | 0.020 | 0.005 | -0.012 | -0.016 |
|  | $(0.015,0.022)$ | $(0.014,0.017)$ | $(0.018,0.022)$ | $(0.002,0.008)$ | $(-0.013,-0.010)$ | $(-0.019,-0.014)$ |
| 0.900 | 0.033 | 0.018 | 0.024 | 0.008 | -0.014 | -0.020 |
|  | $(0.028,0.037)$ | $(0.016,0.020)$ | $(0.021,0.026)$ | $(0.004,0.013)$ | $(-0.016,0.013)$ | $(-0.023,-0.017)$ |
| 0.925 | 0.050 | 0.020 | 0.027 | 0.010 | -0.017 | -0.024 |
|  | $(0.043,0.056)$ | $(0.018,0.022)$ | $(0.024,0.030)$ | $(0.005,0.015)$ | $(-0.020,0.015)$ | $(-0.027,0.020)$ |
| 0.950 | 0.068 | 0.021 | 0.030 | 0.012 | -0.021 | -0.029 |
|  | $(0.061,0.075)$ | $(0.019,0.024)$ | $(0.027,0.034)$ | $(0.004,0.019)$ | $(-0.023,-0.018)$ | $(-0.032,-0.025)$ |
| 0.975 | 0.085 | 0.022 | 0.033 | 0.013 | -0.026 | -0.035 |
|  | $(0.078,0.093)$ | $(0.020,0.025)$ | $(0.030,0.037)$ | $(0.004,0.021)$ | $(-0.029,0.023)$ | $(-0.039,0.031)$ |
| 1.000 | 0.103 | 0.023 | 0.036 | 0.013 | -0.032 |  |
|  | $(0.093,0.113)$ | $(0.021,0.025)$ | $(0.032,0.040)$ | $(0.002,0.024)$ | $(-0.035,-0.028)$ | $(-0.047,0.038)$ |

Table A8 continued
II) Western Highlands

| Percentile | Plot migrant head |  |  | Plot manager |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Endowment effect | Men's structural advantage | Women's structural disadvantage | Endowment effect | Men's structural advantage | Women's structural disadvantage |
| 0.025 | $\begin{aligned} & -0.079 \\ & (-0.091,0.066) \end{aligned}$ | $\begin{aligned} & -0.032 \\ & (-0.037,-0.028) \end{aligned}$ | $\begin{aligned} & -0.041 \\ & (-0.046,-0.034) \end{aligned}$ | $\begin{aligned} & \hline 0.063 \\ & (0.052,0.074) \end{aligned}$ | $\begin{aligned} & 0.019 \\ & (0.013,0.025) \end{aligned}$ | $\begin{aligned} & \hline 0.018 \\ & (0.012, .024) \end{aligned}$ |
| 0.050 | $\begin{aligned} & -0.079 \\ & (-0.088,-0.069) \end{aligned}$ | $\begin{aligned} & -0.033 \\ & (-0.037,-0.028) \end{aligned}$ | $\begin{aligned} & -0.039 \\ & (-0.045,-0.033) \end{aligned}$ | $\begin{aligned} & 0.049 \\ & (0.040,0.059) \end{aligned}$ | $\begin{aligned} & 0.020 \\ & (0.014,0.025) \end{aligned}$ | $\begin{aligned} & 0.020 \\ & (0.014,0.025) \end{aligned}$ |
| 0.075 | $\begin{aligned} & -0.075 \\ & (-0.084,-0.067) \end{aligned}$ | $\begin{aligned} & -0.030 \\ & (-0.034,-0.026) \end{aligned}$ | $\begin{aligned} & -0.034 \\ & (-0.039,-0.029) \end{aligned}$ | $\begin{aligned} & 0.037 \\ & (0.028,0.045) \end{aligned}$ | $\begin{aligned} & 0.018 \\ & (0.013,0.023) \end{aligned}$ | $\begin{aligned} & 0.019 \\ & (0.013, .024) \end{aligned}$ |
| 0.100 | $\begin{aligned} & -0.069 \\ & (-0.076,-0.062) \end{aligned}$ | $\begin{aligned} & -0.023 \\ & (-0.027,-0.019) \end{aligned}$ | $\begin{aligned} & -0.026 \\ & (-0.030,0.021) \end{aligned}$ | $\begin{aligned} & 0.027 \\ & (0.019,0.034) \end{aligned}$ | $\begin{aligned} & 0.015 \\ & (0.010,0.019) \end{aligned}$ | $\begin{aligned} & 0.015 \\ & (0.011, .020) \end{aligned}$ |
| 0.125 | $\begin{aligned} & -0.058 \\ & (-0.063,-0.053) \end{aligned}$ | $\begin{aligned} & -0.014 \\ & (-0.019,-0.010) \end{aligned}$ | $\begin{aligned} & -0.015 \\ & (-0.020,-0.011) \end{aligned}$ | $\begin{aligned} & 0.020 \\ & (0.015,0.025) \end{aligned}$ | $\begin{aligned} & 0.010 \\ & (0.006,0.014) \end{aligned}$ | $\begin{aligned} & 0.010 \\ & (0.006, .014) \end{aligned}$ |
| 0.150 | $\begin{aligned} & -0.045 \\ & (-0.050,-0.040) \end{aligned}$ | $\begin{aligned} & -0.004 \\ & (-0.008,-0.001) \end{aligned}$ | $\begin{aligned} & -0.005 \\ & (-0.008,-0.001) \end{aligned}$ | $\begin{aligned} & 0.016 \\ & (0.011,0.021) \end{aligned}$ | $\begin{aligned} & 0.005 \\ & (0.001,0.007) \end{aligned}$ | $\begin{aligned} & 0.005 \\ & (0.001,0.008) \end{aligned}$ |
| 0.175 | $\begin{aligned} & -0.031 \\ & (-0.035,-0.026) \end{aligned}$ | $\begin{aligned} & 0.005 \\ & (0.003,0.008) \end{aligned}$ | $\begin{aligned} & 0.006 \\ & (0.003,0.009) \end{aligned}$ | $\begin{aligned} & 0.015 \\ & (0.011,0.019) \end{aligned}$ | $\begin{aligned} & -0.0001 \\ & (-0.003,0.003) \end{aligned}$ | $\begin{aligned} & -0.0001 \\ & (-0.003,0.003) \end{aligned}$ |
| 0.200 | $\begin{aligned} & -0.018 \\ & (-0.022,-0.014) \end{aligned}$ | $\begin{aligned} & 0.013 \\ & (0.011,0.016) \end{aligned}$ | $\begin{aligned} & 0.013 \\ & (0.011,0.016) \end{aligned}$ | $\begin{aligned} & 0.016 \\ & (0.012,0.019) \end{aligned}$ | $\begin{aligned} & -0.003 \\ & (-0.005,0.0003) \end{aligned}$ | $\begin{aligned} & -0.003 \\ & (-0.006,-0.0003) \end{aligned}$ |
| 0.225 | $\begin{aligned} & -0.009 \\ & (-0.012,-0.005) \end{aligned}$ | $\begin{aligned} & 0.019 \\ & (0.016,0.021) \end{aligned}$ | $\begin{aligned} & 0.020 \\ & (0.018,0.023) \end{aligned}$ | $\begin{aligned} & 0.016 \\ & (0.012,0.020) \end{aligned}$ | $\begin{aligned} & -0.004 \\ & (-0.006,-0.002) \end{aligned}$ | $\begin{aligned} & -0.004 \\ & (-0.007,0.002) \end{aligned}$ |
| 0.250 | $\begin{aligned} & -0.003 \\ & (-0.007,0.0001) \end{aligned}$ | $\begin{aligned} & 0.022 \\ & (0.020,0.024) \end{aligned}$ | $\begin{aligned} & 0.025 \\ & (0.022,0.027) \end{aligned}$ | $\begin{aligned} & 0.016 \\ & (0.012,0.019) \end{aligned}$ | $\begin{aligned} & -0.004 \\ & (-0.006,-0.002) \end{aligned}$ | $\begin{aligned} & -0.004 \\ & (-0.006,-0.002) \end{aligned}$ |
| 0.275 | $\begin{aligned} & -0.001 \\ & (-0.004,0.002) \end{aligned}$ | $\begin{aligned} & 0.023 \\ & (0.021,0.025) \end{aligned}$ | $\begin{aligned} & 0.027 \\ & (0.025,0.029) \end{aligned}$ | $\begin{aligned} & 0.015 \\ & (0.012,0.018) \end{aligned}$ | $\begin{aligned} & -0.003 \\ & (-0.005,-0.001) \end{aligned}$ | $\begin{aligned} & -0.003 \\ & (-0.005,-0.001) \end{aligned}$ |
| 0.300 | $\begin{aligned} & -0.001 \\ & (-0.004,0.002) \end{aligned}$ | $\begin{aligned} & 0.022 \\ & (0.021,0.024) \end{aligned}$ | $\begin{aligned} & 0.028 \\ & (0.025,0.030) \end{aligned}$ | $\begin{aligned} & 0.012 \\ & (0.009,0.015) \end{aligned}$ | $\begin{aligned} & -0.003 \\ & (-0.004,-0.001) \end{aligned}$ | $\begin{aligned} & -0.003 \\ & (-0.005,0.001) \end{aligned}$ |
| 0.325 | $\begin{aligned} & -0.001 \\ & (-0.004,0.001) \end{aligned}$ | $\begin{aligned} & 0.021 \\ & (0.020,0.023) \end{aligned}$ | $\begin{aligned} & 0.027 \\ & (0.026,0.029) \end{aligned}$ | $\begin{aligned} & 0.009 \\ & (0.006,0.012) \end{aligned}$ | $\begin{aligned} & -0.002 \\ & (-0.004,-0.001) \end{aligned}$ | $\begin{aligned} & -0.002 \\ & (-0.004,0.001) \end{aligned}$ |
| 0.350 | $\begin{aligned} & -0.002 \\ & (-0.004,0.0004) \end{aligned}$ | $\begin{aligned} & 0.019 \\ & (0.017,0.020) \end{aligned}$ | $\begin{aligned} & 0.026 \\ & (0.024,0.028) \end{aligned}$ | $\begin{aligned} & 0.005 \\ & (0.003,0.008) \end{aligned}$ | $\begin{aligned} & -0.002 \\ & (-0.004,-0.001) \end{aligned}$ | $\begin{aligned} & -0.003 \\ & (-0.004,0.001) \end{aligned}$ |
| 0.375 | $\begin{aligned} & -0.002 \\ & (-0.004,0.001) \end{aligned}$ | $\begin{aligned} & 0.016 \\ & (0.015,0.017) \end{aligned}$ | $\begin{aligned} & 0.023 \\ & (0.021,0.025) \end{aligned}$ | $\begin{aligned} & 0.002 \\ & (-0.0001,0.004) \end{aligned}$ | $\begin{aligned} & -0.003 \\ & (-0.004,-0.001) \end{aligned}$ | $\begin{aligned} & -0.003 \\ & (-0.004,0.001) \end{aligned}$ |
| 0.400 | $\begin{aligned} & -0.001 \\ & (-0.002,0.001) \end{aligned}$ | $\begin{aligned} & 0.012 \\ & (0.011,0.013) \end{aligned}$ | $\begin{aligned} & 0.018 \\ & (0.016,0.020) \end{aligned}$ | $\begin{aligned} & -0.00003 \\ & (-0.001,0.001) \end{aligned}$ | $\begin{aligned} & -0.003 \\ & (-0.005,-0.002) \end{aligned}$ | $\begin{aligned} & -0.005 \\ & (-0.005,0.002) \end{aligned}$ |
| 0.425 | $\begin{aligned} & 0.001 \\ & (-0.001,0.002) \end{aligned}$ | $\begin{aligned} & 0.008 \\ & (0.007,0.009) \end{aligned}$ | $\begin{aligned} & 0.012 \\ & (0.010,0.013) \end{aligned}$ | $\begin{aligned} & 0.0005 \\ & (-0.001,0.002) \end{aligned}$ | $\begin{aligned} & -0.004 \\ & (-0.006,0.003) \end{aligned}$ | $\begin{aligned} & -0.006 \\ & (-0.006,0.003) \end{aligned}$ |
| 0.450 | $\begin{aligned} & 0.002 \\ & (0.001,0.004) \end{aligned}$ | $\begin{aligned} & 0.003 \\ & (0.002,0.004) \end{aligned}$ | $\begin{aligned} & 0.005 \\ & (0.004,0.007) \end{aligned}$ | $\begin{aligned} & 0.003 \\ & (0.002,0.005) \end{aligned}$ | $\begin{aligned} & -0.006 \\ & (-0.007,-0.005) \end{aligned}$ | $\begin{aligned} & -0.007 \\ & (-0.008,0.005) \end{aligned}$ |
| 0.475 | $\begin{aligned} & 0.004 \\ & (0.002,0.005) \end{aligned}$ | $\begin{aligned} & -0.001 \\ & (-0.002,0.0003) \end{aligned}$ | $\begin{aligned} & -0.001 \\ & (-0.002,0.0004) \end{aligned}$ | $\begin{aligned} & 0.006 \\ & (0.005,0.008) \end{aligned}$ | $\begin{aligned} & -0.008 \\ & (-0.009,-0.007) \end{aligned}$ | $\begin{aligned} & -0.009 \\ & (-0.009,0.007) \end{aligned}$ |
| 0.500 | $\begin{aligned} & 0.005 \\ & (0.004,0.006) \end{aligned}$ | $\begin{aligned} & -.004 \\ & (-0.005,-0.003) \end{aligned}$ | $\begin{aligned} & -0.006 \\ & (-0.007,-0.005) \end{aligned}$ | $\begin{aligned} & 0.008 \\ & (0.007,0.010) \end{aligned}$ | $\begin{aligned} & -0.009 \\ & (-0.010,-0.008) \end{aligned}$ | $\begin{aligned} & -0.010 \\ & (-0.010,0.008) \end{aligned}$ |
| 0.525 | $\begin{aligned} & 0.007 \\ & (0.005,0.008) \end{aligned}$ | $\begin{aligned} & -0.006 \\ & (-0.006,-0.005) \end{aligned}$ | $\begin{aligned} & -0.009 \\ & (-0.010,-0.008) \end{aligned}$ | $\begin{aligned} & 0.009 \\ & (0.007,0.010) \end{aligned}$ | $\begin{aligned} & -0.010 \\ & (-0.011,-0.009) \end{aligned}$ | $\begin{aligned} & -0.010 \\ & (-0.011,0.009) \end{aligned}$ |
| 0.550 | $\begin{aligned} & 0.008 \\ & (0.007,0.010) \end{aligned}$ | $\begin{aligned} & -0.007 \\ & (-0.007,-0.006) \end{aligned}$ | $\begin{aligned} & -0.010 \\ & (-0.011,-0.009) \end{aligned}$ | $\begin{aligned} & 0.007 \\ & (0.006,0.008) \end{aligned}$ | $\begin{aligned} & -0.011 \\ & (-0.012,-0.010) \end{aligned}$ | $\begin{aligned} & -0.011 \\ & (-0.012,0.010) \end{aligned}$ |
| 0.575 | $\begin{aligned} & 0.010 \\ & (0.008,0.011) \end{aligned}$ | $\begin{aligned} & -0.006 \\ & (-0.007,-0.005) \end{aligned}$ | $\begin{aligned} & -0.009 \\ & (-0.011,-0.008) \end{aligned}$ | $\begin{aligned} & 0.004 \\ & (0.003,0.005) \end{aligned}$ | $\begin{aligned} & -0.012 \\ & (-0.013,-0.011) \end{aligned}$ | $\begin{aligned} & -0.010 \\ & (-0.012,-0.010) \end{aligned}$ |
| 0.600 | $\begin{aligned} & 0.010 \\ & (0.009,0.011) \end{aligned}$ | $\begin{aligned} & -0.005 \\ & (-0.006,-0.004) \end{aligned}$ | $\begin{aligned} & -0.008 \\ & (-0.009,-0.006) \end{aligned}$ | $\begin{aligned} & 0.001 \\ & (-0.001,0.002) \end{aligned}$ | $\begin{aligned} & -0.012 \\ & (-0.013,-0.011) \end{aligned}$ | $\begin{aligned} & -0.010 \\ & (-0.012,0.010) \end{aligned}$ |
| 0.625 | $\begin{aligned} & 0.009 \\ & (0.007,0.010) \end{aligned}$ | $\begin{aligned} & -0.004 \\ & (-0.004,-0.003) \end{aligned}$ | $\begin{aligned} & -0.005 \\ & (-0.007,-0.004) \end{aligned}$ | $\begin{aligned} & -0.002 \\ & (-0.003,-0.0003) \end{aligned}$ | $\begin{aligned} & -0.012 \\ & (-0.013,-0.011) \end{aligned}$ | $\begin{aligned} & -0.008 \\ & (-0.011,-0.009) \end{aligned}$ |
| 0.650 | $\begin{aligned} & 0.006 \\ & (0.005,0.007) \end{aligned}$ | $\begin{aligned} & -0.002 \\ & (-0.003,-0.002) \end{aligned}$ | $\begin{aligned} & -0.003 \\ & (-0.005,-0.002) \end{aligned}$ | $\begin{aligned} & -0.002 \\ & (-0.004,0.001) \end{aligned}$ | $\begin{aligned} & -0.010 \\ & (-0.011,-0.009) \end{aligned}$ | $\begin{aligned} & -0.005 \\ & (-0.009,-0.007) \end{aligned}$ |

Table A8 continued
II) Western Highlands

| Percenti le | Plot migrant head |  |  | Plot manager |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Endowment effect | Men's structural advantage | Women's structural disadvantage | Endowment effect | Men's structural advantage | Women's structural disadvantage |
| 0.675 | $\begin{aligned} & 0.003 \\ & (0.001,0.004) \end{aligned}$ | $\begin{aligned} & -0.002 \\ & (-0.002,-0.001) \end{aligned}$ | $\begin{aligned} & -0.002 \\ & (-0.003,-0.001) \end{aligned}$ | $\begin{aligned} & \hline-0.002 \\ & (-0.003,-0.001) \end{aligned}$ | $\begin{aligned} & -0.006 \\ & (-0.007,-0.005) \end{aligned}$ | $\begin{aligned} & -0.001 \\ & (-0.006,-0.004) \end{aligned}$ |
| 0.700 | $\begin{aligned} & -0.001 \\ & (-0.002,0.001) \end{aligned}$ | $\begin{aligned} & -0.001 \\ & (-0.002,-0.001) \end{aligned}$ | $\begin{aligned} & -0.002 \\ & (-0.003,-0.001) \end{aligned}$ | $\begin{aligned} & -0.001 \\ & (-0.002, .0003) \end{aligned}$ | $\begin{aligned} & -0.001 \\ & (-0.002,0.0005) \end{aligned}$ | $\begin{aligned} & 0.004 \\ & (-0.002,0.0004) \end{aligned}$ |
| 0.725 | $\begin{aligned} & -0.003 \\ & (-0.005,-0.002) \end{aligned}$ | $\begin{aligned} & -0.002 \\ & (-0.003,-0.001) \end{aligned}$ | $\begin{aligned} & -0.003 \\ & (-0.004,-0.001) \end{aligned}$ | $\begin{aligned} & -0.0001 \\ & (-0.001,0.001) \end{aligned}$ | $\begin{aligned} & 0.005 \\ & (0.004,0.006) \end{aligned}$ | $\begin{aligned} & 0.008 \\ & (0.003,0.005) \end{aligned}$ |
| 0.750 | $\begin{aligned} & -0.004 \\ & (-0.006,-0.002) \end{aligned}$ | $\begin{aligned} & -0.002 \\ & (-0.004,-0.002) \end{aligned}$ | $\begin{aligned} & -0.004 \\ & (-0.005,-0.002) \end{aligned}$ | $\begin{aligned} & 0.001 \\ & (-0.001,0.002) \end{aligned}$ | $\begin{aligned} & 0.010 \\ & (0.008,0.011) \end{aligned}$ | $\begin{aligned} & 0.009 \\ & (0.007,0.009) \end{aligned}$ |
| 0.775 | $\begin{aligned} & -0.003 \\ & (-0.005,-0.002) \end{aligned}$ | $\begin{aligned} & -0.003 \\ & (-0.004,-0.002) \end{aligned}$ | $\begin{aligned} & -0.005 \\ & (-0.006,-0.003) \end{aligned}$ | $\begin{aligned} & 0.001 \\ & (-0.0003,0.003) \end{aligned}$ | $\begin{aligned} & 0.011 \\ & (0.010,0.013) \end{aligned}$ | $\begin{aligned} & 0.008 \\ & (0.008,0.01 \text { ו } \end{aligned}$ |
| 0.800 | $\begin{aligned} & -0.001 \\ & (-0.002,0.001) \end{aligned}$ | $\begin{aligned} & -0.004 \\ & (-0.005,-0.003) \end{aligned}$ | $\begin{aligned} & -0.005 \\ & (-0.006,-0.004) \end{aligned}$ | $\begin{aligned} & 0.002 \\ & (0.001,0.004) \end{aligned}$ | $\begin{aligned} & 0.009 \\ & (0.008,0.011) \end{aligned}$ | $\begin{aligned} & 0.002 \\ & (0.007,0.009) \end{aligned}$ |
| 0.825 | $\begin{aligned} & 0.004 \\ & (0.002,0.006) \end{aligned}$ | $\begin{aligned} & -0.003 \\ & (-0.005,-0.002) \end{aligned}$ | $\begin{aligned} & -0.005 \\ & (-0.006,-0.003) \end{aligned}$ | $\begin{aligned} & 0.004 \\ & (0.002,0.006) \end{aligned}$ | $\begin{aligned} & 0.002 \\ & (0.010,0.004) \end{aligned}$ | $\begin{aligned} & -0.008 \\ & (0.001,0.004) \end{aligned}$ |
| 0.850 | $\begin{aligned} & 0.010 \\ & (0.007,0.012) \end{aligned}$ | $\begin{aligned} & -0.002 \\ & (-0.003,-0.001) \end{aligned}$ | $\begin{aligned} & -0.003 \\ & (-0.005,-0.001) \end{aligned}$ | $\begin{aligned} & 0.006 \\ & (0.004,0.008) \end{aligned}$ | $\begin{aligned} & -0.008 \\ & (-0.010,-0.006) \end{aligned}$ | $\begin{aligned} & -0.020 \\ & (-0.010,0.006) \end{aligned}$ |
| 0.875 | $\begin{aligned} & 0.016 \\ & (0.013,0.019) \end{aligned}$ | $\begin{aligned} & -0.001 \\ & (-0.002,0.001) \end{aligned}$ | $\begin{aligned} & -0.001 \\ & (-0.003,0.001) \end{aligned}$ | $\begin{aligned} & 0.005 \\ & (0.002,0.008) \end{aligned}$ | $\begin{aligned} & -0.021 \\ & (-0.023,0.019) \end{aligned}$ | $\begin{aligned} & -0.032 \\ & (-0.022,0.018) \end{aligned}$ |
| 0.900 | $\begin{aligned} & 0.022 \\ & (0.019,0.025) \end{aligned}$ | $\begin{aligned} & 0.001 \\ & (-0.001,0.004) \end{aligned}$ | $\begin{aligned} & 0.001 \\ & (-0.001,0.005) \end{aligned}$ | $\begin{aligned} & -0.001 \\ & (-0.006,0.003) \end{aligned}$ | $\begin{aligned} & -0.034 \\ & (-0.036,0.031) \end{aligned}$ | $\begin{aligned} & -0.043 \\ & (-0.035,-0.030) \end{aligned}$ |
| 0.925 | $\begin{aligned} & 0.029 \\ & (0.023,0.034) \end{aligned}$ | $\begin{aligned} & 0.003 \\ & (0.001,0.005) \end{aligned}$ | $\begin{aligned} & 0.004 \\ & (0.001,0.007 \end{aligned}$ | $\begin{aligned} & -0.013 \\ & (-0.019,-0.008) \end{aligned}$ | $\begin{aligned} & -0.045 \\ & (-0.047,0.041) \end{aligned}$ | $\begin{aligned} & -0.043 \\ & (-0.045,-0.040) \end{aligned}$ |
| 0.950 | $\begin{aligned} & 0.035 \\ & (0.028,0.041) \end{aligned}$ | $\begin{aligned} & 0.004 \\ & (0.001,0.007) \end{aligned}$ | $\begin{aligned} & 0.005 \\ & (0.002,0.009) \end{aligned}$ | $\begin{aligned} & -0.030 \\ & (-0.037,-0.023) \end{aligned}$ | $\begin{aligned} & -0.054 \\ & (-0.057,0.051) \end{aligned}$ | $\begin{aligned} & -0.050 \\ & (-0.053,0.047) \end{aligned}$ |
| 0.975 | $\begin{aligned} & 0.040 \\ & (0.032,0.049) \end{aligned}$ | $\begin{aligned} & 0.004 \\ & (0.002,0.007) \end{aligned}$ | $\begin{aligned} & 0.006 \\ & (0.002,0.010) \end{aligned}$ | $\begin{aligned} & -0.049 \\ & (-0.057,-0.041) \end{aligned}$ | $\begin{aligned} & -0.062 \\ & (-0.066,-0.058) \end{aligned}$ | $\begin{aligned} & -0.055 \\ & (-0.059,0.052) \end{aligned}$ |
| 1.000 | $\begin{aligned} & 0.045 \\ & (0.034,0.055) \\ & \hline \end{aligned}$ | $\begin{aligned} & 0.004 \\ & (0.001,0.007) \\ & \hline \end{aligned}$ | $\begin{aligned} & 0.006 \\ & (0.002,0.010) \end{aligned}$ | $\begin{aligned} & -0.069 \\ & (-0.078,-0.060) \\ & \hline \end{aligned}$ | $\begin{aligned} & -0.069 \\ & (-0.073,0.065) \\ & \hline \end{aligned}$ | $\begin{aligned} & -0.059 \\ & (-0.062,0.056) \\ & \hline \end{aligned}$ |


| Percentile | Plot owner |  |  |
| :--- | :--- | :--- | :--- |
|  | Endowment effect | Men's structural <br> advantage | Women's structural <br> disadvantage |
| 0.025 | 0.012 | 0.046 | 0.063 |
| 0.050 | $(-0.002,0.026)$ | $(0.042,0.050)$ | $(0.058,0.068)$ |
| 0.075 | -0.006 | 0.047 | 0.066 |
|  | $(-0.017,0.004)$ | $(0.043,0.051)$ | $(0.060,0.071)$ |
| 0.100 | -0.024 | 0.047 | 0.067 |
|  | $(-0.033,-0.014)$ | $(0.043,0.050)$ | $(0.062,0.071)$ |
| 0.125 | -0.037 | 0.041 | 0.065 |
| 0.150 | $(-0.045,-0.029)$ | $(0.041,0.048)$ | $(0.060,0.070)$ |
|  | -0.045 | 0.039 | 0.058 |
| 0.175 | $(-0.051,-0.039)$ | $(0.036,0.042)$ | $(0.054,0.063)$ |
| 0.200 | -0.045 | 0.031 | 0.048 |
|  | $(-0.051,-0.040)$ | $(0.029,0.034)$ | $(0.044,0.051)$ |
| 0.225 | -0.040 | 0.023 | 0.034 |
|  | $(-0.044,-0.036)$ | $(0.020,0.025)$ | $(0.031,0.038)$ |
| 0.250 | -0.032 | 0.014 | 0.021 |
|  | $(-0.036,-0.028)$ | $(0.012,0.016)$ | $(0.018,0.025)$ |

Table A8 continued II) Western Highlands


|  | $(0.039,0.052)$ | $(0.015,0.020)$ | $(0.022,0.029)$ |
| :--- | :--- | :--- | :--- |
| 0.975 | 0.057 | 0.021 | 0.032 |
|  | $(0.048,0.066)$ | $(0.019,0.023)$ | $(0.028,0.035)$ |
| 1.000 | 0.068 | 0.025 | 0.039 |
|  | $(0.058,0.077)$ | $(0.022,0.027)$ | $(0.035,0.042)$ |

Table A8 continued
III) Bimodal Rainfall Humid Forest

| Perce ntile | Plot head |  |  | Plot de jure head |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Endowment effect | Men's structural advantage | Women's structural disadvantage | Endowment effect | Men's structural advantage | Women's structural disadvantage |
| 0.025 | $\begin{aligned} & \hline-0.204 \\ & (-0.249,-0.160) \end{aligned}$ | $\begin{aligned} & \hline 0.065 \\ & (0.059,0.071) \end{aligned}$ | $\begin{aligned} & \hline 0.076 \\ & (0.069,0.082) \end{aligned}$ | $\begin{aligned} & -0.205 \\ & (-0.241,-0.169) \end{aligned}$ | $\begin{aligned} & \hline 0.057 \\ & (0.050,0.065) \end{aligned}$ | $\begin{aligned} & \hline 0.065 \\ & (0.057,0.073) \end{aligned}$ |
| 0.050 | $\begin{aligned} & -0.231 \\ & (-0.274,-0.188) \end{aligned}$ | $\begin{aligned} & 0.062 \\ & (0.054,0.069) \end{aligned}$ | $\begin{aligned} & 0.070 \\ & (0.062,0.078) \end{aligned}$ | $\begin{aligned} & -0.182 \\ & (-0.213,-0.151) \end{aligned}$ | $\begin{aligned} & 0.057 \\ & (0.050,0.064) \end{aligned}$ | $\begin{aligned} & 0.065 \\ & (0.056,0.073) \end{aligned}$ |
| 0.075 | $\begin{aligned} & -0.249 \\ & (-0.287,-0.211) \end{aligned}$ | $\begin{aligned} & 0.056 \\ & (0.049,0.062) \end{aligned}$ | $\begin{aligned} & 0.061 \\ & (0.053,0.069) \end{aligned}$ | $\begin{aligned} & -0.157 \\ & (-0.185,-0.129) \end{aligned}$ | $\begin{aligned} & 0.057 \\ & (0.050,0.065) \end{aligned}$ | $\begin{aligned} & 0.065 \\ & (0.057,0.073) \end{aligned}$ |
| 0.100 | $\begin{aligned} & -0.259 \\ & (-0.294,-0.223) \end{aligned}$ | $\begin{aligned} & 0.048 \\ & (0.038,0.058) \end{aligned}$ | $\begin{aligned} & 0.051 \\ & (0.042,0.060) \end{aligned}$ | $\begin{aligned} & -0.123 \\ & (-0.153,0.093) \end{aligned}$ | $\begin{aligned} & 0.057 \\ & (0.049,0.065) \end{aligned}$ | $\begin{aligned} & 0.066 \\ & (0.056,0.075) \end{aligned}$ |
| 0.125 | $\begin{aligned} & -0.256 \\ & (-0.285,-0.227) \end{aligned}$ | $\begin{aligned} & 0.038 \\ & (0.029,0.046) \end{aligned}$ | $\begin{aligned} & 0.039 \\ & (0.030,0.048) \end{aligned}$ | $\begin{aligned} & -0.090 \\ & (-0.119,-0.061) \end{aligned}$ | $\begin{aligned} & 0.053 \\ & (0.046,0.061) \end{aligned}$ | $\begin{aligned} & 0.062 \\ & (0.053,0.071) \end{aligned}$ |
| 0.150 | $\begin{aligned} & -0.238 \\ & (-0.266,-0.210) \end{aligned}$ | $\begin{aligned} & 0.025 \\ & (0.017,0.032) \end{aligned}$ | $\begin{aligned} & 0.025 \\ & (0.017,0.032) \end{aligned}$ | $\begin{aligned} & -0.050 \\ & (-0.080,-0.020) \end{aligned}$ | $\begin{aligned} & 0.049 \\ & (0.041,0.057) \end{aligned}$ | $\begin{aligned} & 0.058 \\ & (0.049,0.067) \end{aligned}$ |
| 0.175 | $\begin{aligned} & -0.210 \\ & (-0.233,-0.186) \end{aligned}$ | $\begin{aligned} & 0.008 \\ & (-0.0004,0.017) \end{aligned}$ | $\begin{aligned} & 0.008 \\ & (-0.001,0.017) \end{aligned}$ | $\begin{aligned} & -0.011 \\ & (-0.038,0.016) \end{aligned}$ | $\begin{aligned} & 0.043 \\ & (0.036,0.050) \end{aligned}$ | $\begin{aligned} & 0.052 \\ & (0.044,0.061) \end{aligned}$ |
| 0.200 | $\begin{aligned} & -0.172 \\ & (-0.193,-0.151) \end{aligned}$ | $\begin{aligned} & -0.008 \\ & (-0.017,0.001) \end{aligned}$ | $\begin{aligned} & -0.007 \\ & (-0.015,0.001) \end{aligned}$ | $\begin{aligned} & 0.022 \\ & (0.001,0.043) \end{aligned}$ | $\begin{aligned} & 0.037 \\ & (0.030,0.044) \end{aligned}$ | $\begin{aligned} & 0.046 \\ & (0.038,0.055) \end{aligned}$ |
| 0.225 | $\begin{aligned} & -0.130 \\ & (-0.150,-0.109) \end{aligned}$ | $\begin{aligned} & -0.021 \\ & (-0.029,-0.013) \end{aligned}$ | $\begin{aligned} & -0.018 \\ & (-0.025,-0.012) \end{aligned}$ | $\begin{aligned} & 0.046 \\ & (0.030,0.062) \end{aligned}$ | $\begin{aligned} & 0.030 \\ & (0.023,0.036) \end{aligned}$ | $\begin{aligned} & 0.039 \\ & (0.030,0.048) \end{aligned}$ |
| 0.250 | $\begin{aligned} & -0.098 \\ & (-0.103,-0.073) \end{aligned}$ | $\begin{aligned} & -0.027 \\ & (-0.034,-0.021) \end{aligned}$ | $\begin{aligned} & -0.023 \\ & (-0.029,-0.017) \end{aligned}$ | $\begin{aligned} & 0.060 \\ & (0.043,0.077) \end{aligned}$ | $\begin{aligned} & 0.026 \\ & (0.020,0.031) \end{aligned}$ | $\begin{aligned} & 0.035 \\ & (0.027,0.044) \end{aligned}$ |
| 0.275 | $\begin{aligned} & -0.057 \\ & (-0.073,-0.040) \end{aligned}$ | $\begin{aligned} & -0.030 \\ & (-0.036,-0.024) \end{aligned}$ | $\begin{aligned} & -0.024 \\ & (-0.030,-0.019) \end{aligned}$ | $\begin{aligned} & 0.061 \\ & (0.044,0.078) \end{aligned}$ | $\begin{aligned} & 0.022 \\ & (0.017,0.027) \end{aligned}$ | $\begin{aligned} & 0.031 \\ & (0.024,0.039) \end{aligned}$ |
| 0.300 | $\begin{aligned} & -0.032 \\ & (-0.046,-0.019) \end{aligned}$ | $\begin{aligned} & -0.026 \\ & (-0.033,-0.019) \end{aligned}$ | $\begin{aligned} & -0.021 \\ & (-0.026,-0.016) \end{aligned}$ | $\begin{aligned} & 0.051 \\ & (0.037,0.066) \end{aligned}$ | $\begin{aligned} & 0.018 \\ & (0.013,0.023) \end{aligned}$ | $\begin{aligned} & 0.027 \\ & (0.019,0.034) \end{aligned}$ |
| 0.325 | $\begin{aligned} & -0.014 \\ & (-0.026,-0.002) \end{aligned}$ | $\begin{aligned} & -0.018 \\ & (-0.024,-0.012) \end{aligned}$ | $\begin{aligned} & -0.014 \\ & (-0.019,-0.010) \end{aligned}$ | $\begin{aligned} & 0.036 \\ & (0.025,0.047) \end{aligned}$ | $\begin{aligned} & 0.016 \\ & (0.011,0.020) \end{aligned}$ | $\begin{aligned} & 0.023 \\ & (0.017,0.029) \end{aligned}$ |
| 0.350 | $\begin{aligned} & -0.002 \\ & (-0.011,0.008) \end{aligned}$ | $\begin{aligned} & -0.011 \\ & (-0.015,-0.006) \end{aligned}$ | $\begin{aligned} & -0.009 \\ & (-0.012,-0.005) \end{aligned}$ | $\begin{aligned} & 0.020 \\ & (0.012,0.028) \end{aligned}$ | $\begin{aligned} & 0.011 \\ & (0.007,0.015) \end{aligned}$ | $\begin{aligned} & 0.017 \\ & (0.011,0.023) \end{aligned}$ |
| 0.375 | $\begin{aligned} & 0.009 \\ & (0.0001,0.018) \end{aligned}$ | $\begin{aligned} & -0.004 \\ & (-0.008,-0.001) \end{aligned}$ | $\begin{aligned} & -0.003 \\ & (-0.007,-0.0002) \end{aligned}$ | $\begin{aligned} & 0.005 \\ & (-0.004,0.014) \end{aligned}$ | $\begin{aligned} & 0.006 \\ & (0.003,0.009) \end{aligned}$ | $\begin{aligned} & 0.009 \\ & (0.004,0.014) \end{aligned}$ |
| 0.400 | $\begin{aligned} & 0.018 \\ & (0.010,0.027) \end{aligned}$ | $\begin{aligned} & -0.0003 \\ & (-0.004,0.003) \end{aligned}$ | $\begin{aligned} & -0.0002 \\ & (-0.003,0.002) \end{aligned}$ | $\begin{aligned} & -0.005 \\ & (-0.013,0.003) \end{aligned}$ | $\begin{aligned} & -0.001 \\ & (-0.003,0.002) \end{aligned}$ | $\begin{aligned} & -0.001 \\ & (-0.005,0.003) \end{aligned}$ |


| 0.425 | 0.026 | 0.002 | 0.002 | -0.010 | -0.008 | -0.011 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | $(0.018,0.034)$ | $(-0.001,0.005)$ | $(-0.001,0.004)$ | $(-0.017,-0.004)$ | $(-0.010,-0.005)$ | $(-0.015,-0.007)$ |
| 0.450 | 0.037 | 0.003 | 0.003 | -0.010 | -0.014 | -0.020 |
|  | $(0.030,0.044)$ | $(-0.00001,0.006)$ | $(0.0001,0.005)$ | $(-0.017,-0.003)$ | $(-0.017,-0.012)$ | $(-0.023,-0.016)$ |
| 0.475 | 0.046 | 0.002 | 0.001 | -0.007 | -0.019 | -0.025 |
|  | $(0.039,0.053)$ | $(-0.001,0.004)$ | $(-0.001,0.004)$ | $(-0.014,-$ | $(-0.022,-0.017)$ | $(-0.028,-0.022)$ |
| 0.500 | 0.056 | -0.0002 | -0.0002 | $-00004)$ | -0.022 | -0.028 |
|  | $(0.050,0.061)$ | $(-0.002,0.002)$ | $(-0.002,0.002)$ | $(-0.012,0.001)$ | $(-0.025,-0.020)$ | $(-0.031,-0.025)$ |
| 0.525 | 0.063 | -0.003 | -0.003 | -0.001 | -0.024 | -0.028 |
|  | $(0.058,0.069)$ | $(-0.006,-0.001)$ | $(-0.006,-0.001)$ | $(-0.008,0.005)$ | $(-0.026,-0.021)$ | $(-0.031,-0.025)$ |
| 0.550 | 0.068 | -0.006 | -0.006 | 0.004 | -0.023 | -0.026 |
|  | $(0.062,0.073)$ | $(-0.008,-0.004)$ | $(-0.008,-0.004)$ | $(-0.002,0.010)$ | $(-0.025,-0.021)$ | $(-0.028,-0.023)$ |
| 0.575 | 0.067 | -0.009 | -0.010 | 0.007 | -0.021 | -0.022 |
|  | $(0.061,0.073)$ | $(-0.011,-0.007)$ | $(-0.012,-0.007)$ | $(0.002,0.013)$ | $(-0.024,-0.018)$ | $(-0.025,-0.019)$ |
| 0.600 | 0.060 | -0.011 | -0.012 | 0.012 | -0.017 | -0.018 |
|  | $(0.054,0.067)$ | $(-0.013,-0.008)$ | $(-0.015,-0.009)$ | $(0.005,0.018)$ | $(-0.020,-0.014)$ | $(-0.021,-0.015)$ |
| 0.625 | 0.046 | -0.012 | -0.013 | 0.015 | -0.012 | -0.012 |
|  | $(0.039,0.054)$ | $(-0.014,-0.009)$ | $(-0.016,-0.010)$ | $(0.009,0.022)$ | $(-0.015,-0.009)$ | $(-0.015,-0.009)$ |
| 0.650 | 0.026 | -0.011 | -0.012 | 0.018 | -0.007 | -0.007 |
|  | $(0.018,0.034)$ | $(-0.013,-0.008)$ | $(-0.015,-0.009)$ | $(0.011,0.026)$ | $(-0.010,-0.004)$ | $(-0.010,-0.004)$ |
| 0.675 | 0.002 | -0.009 | -0.010 | 0.020 | -0.001 | -0.001 |
|  | $(-0.007,0.011)$ | $(-0.012,-0.006)$ | $(-0.014,-0.007)$ | $(0.013,0.027)$ | $(-0.004,0.003)$ | $(-0.004,0.003)$ |

Table A8 continued
III) Bimodal Rainfall Humid Forest

| Percent ile | Plot head |  |  | Plot de jure head |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Endowment effect | Men's structural advantage | Women's structural disadvantag e | Endowment effect | Men's structural advantage | Women's structural disadvantage |
| 0.700 | $\begin{aligned} & -0.027 \\ & (-0.037,-0.017) \end{aligned}$ | $\begin{aligned} & \hline-0.005 \\ & (-0.008,- \\ & 0.003) \end{aligned}$ | $\begin{aligned} & \hline-0.006 \\ & (-0.009,- \\ & 0.003) \end{aligned}$ | $\begin{aligned} & 0.018 \\ & (0.009,0.027) \end{aligned}$ | $\begin{aligned} & 0.006 \\ & (0.002,0.010) \end{aligned}$ | $\begin{aligned} & 0.006 \\ & (0.002,0.010) \end{aligned}$ |
| 0.725 | $\begin{aligned} & -0.052 \\ & (-0.062,-0.042) \end{aligned}$ | $\begin{aligned} & -0.001 \\ & (-0.004,0.001) \end{aligned}$ | $\begin{aligned} & -0.002 \\ & (-0.004,0.001) \end{aligned}$ | $\begin{aligned} & 0.015 \\ & (0.006,0.023) \end{aligned}$ | $\begin{aligned} & 0.012 \\ & (0.008,0.016) \end{aligned}$ | $\begin{aligned} & 0.012 \\ & (0.008,0.016) \end{aligned}$ |
| 0.750 | $\begin{aligned} & -0.073 \\ & (-0.083,-0.062) \end{aligned}$ | $\begin{aligned} & 0.003 \\ & (0.0002, \\ & 0.006) \end{aligned}$ | $\begin{aligned} & 0.003 \\ & (0.0001 \\ & 0.007) \end{aligned}$ | $\begin{aligned} & 0.009 \\ & (-0.001,0.019) \end{aligned}$ | $\begin{aligned} & 0.017 \\ & (0.013,0.022) \end{aligned}$ | $\begin{aligned} & 0.018 \\ & (0.014,0.022) \end{aligned}$ |
| 0.775 | $\begin{aligned} & -0.088 \\ & (-0.099,-0.076) \end{aligned}$ | $\begin{aligned} & 0.007 \\ & (0.005,0.010) \end{aligned}$ | $\begin{aligned} & 0.008 \\ & (0.005,0.011) \end{aligned}$ | $\begin{aligned} & -0.0001 \\ & (-0.012,0.012) \end{aligned}$ | $\begin{aligned} & 0.021 \\ & (0.017,0.025) \end{aligned}$ | $\begin{aligned} & 0.022 \\ & (0.018,0.027) \end{aligned}$ |
| 0.800 | $\begin{aligned} & -0.097 \\ & (-0.109,-0.086) \end{aligned}$ | $\begin{aligned} & 0.012 \\ & (0.009,0.015) \end{aligned}$ | $\begin{aligned} & 0.012 \\ & (0.009,0.015) \end{aligned}$ | $\begin{aligned} & -0.012 \\ & (-0.023,-0.001) \end{aligned}$ | $\begin{aligned} & 0.026 \\ & (0.022,0.030) \end{aligned}$ | $\begin{aligned} & 0.027 \\ & (0.023,0.032) \end{aligned}$ |
| 0.825 | $\begin{aligned} & -0.102 \\ & (-0.115,-0.089) \end{aligned}$ | $\begin{aligned} & 0.017 \\ & (0.014,0.019) \end{aligned}$ | $\begin{aligned} & 0.016 \\ & (0.013,0.019) \end{aligned}$ | $\begin{aligned} & -0.028 \\ & (-0.039,-0.016) \end{aligned}$ | $\begin{aligned} & 0.028 \\ & (0.025,0.032) \end{aligned}$ | $\begin{aligned} & 0.031 \\ & (0.027,0.035) \end{aligned}$ |
| 0.850 | $\begin{aligned} & -0.102 \\ & (-0.114,-0.089) \end{aligned}$ | $\begin{aligned} & 0.021 \\ & (0.018,0.025) \end{aligned}$ | $\begin{aligned} & 0.020 \\ & (0.017,0.023) \end{aligned}$ | $\begin{aligned} & -0.044 \\ & (-0.058,-0.030) \end{aligned}$ | $\begin{aligned} & 0.030 \\ & (0.026,0.035) \end{aligned}$ | $\begin{aligned} & 0.033 \\ & (0.028,0.038) \end{aligned}$ |
| 0.875 | $\begin{aligned} & -0.099 \\ & (-0.111,-0.087) \end{aligned}$ | $\begin{aligned} & 0.026 \\ & (0.022,0.029) \end{aligned}$ | $\begin{aligned} & 0.023 \\ & (0.020,0.027) \end{aligned}$ | $\begin{aligned} & -0.060 \\ & (-0.072,-0.049) \end{aligned}$ | $\begin{aligned} & 0.030 \\ & (0.026,0.035) \end{aligned}$ | 0.033 (0.028, 0.038) |
| 0.900 | $\begin{aligned} & -0.093 \\ & (-0.107,-0.080) \end{aligned}$ | $\begin{aligned} & 0.029 \\ & (0.025,0.033) \end{aligned}$ | $\begin{aligned} & 0.026 \\ & (0.022,0.029) \end{aligned}$ | $\begin{aligned} & -0.075 \\ & (-0.086,-0.065) \end{aligned}$ | $\begin{aligned} & 0.030 \\ & (0.026,0.033) \end{aligned}$ |  |
| 0.925 | $\begin{aligned} & -0.087 \\ & (-0.101,-0.073) \end{aligned}$ | $\begin{aligned} & 0.032 \\ & (0.028,0.036) \end{aligned}$ | $\begin{aligned} & 0.027 \\ & (0.024,0.030) \end{aligned}$ | $\begin{aligned} & -0.088 \\ & (-0.099,-0.076) \end{aligned}$ | $\begin{aligned} & 0.028 \\ & (0.024,0.032) \end{aligned}$ | $\begin{aligned} & 0.030 \\ & (0.026, \\ & 0.034) \end{aligned}$ |
| 0.950 | $\begin{aligned} & -0.078 \\ & (-0.092,-0.064) \end{aligned}$ | $\begin{aligned} & 0.033 \\ & (0.030,0.037) \end{aligned}$ | $\begin{aligned} & 0.028 \\ & (0.025,0.031) \end{aligned}$ | $\begin{aligned} & -0.097 \\ & (-0.110,-0.084) \end{aligned}$ | $\begin{aligned} & 0.025 \\ & (0.022,0.029) \end{aligned}$ | 0.027 <br> (0.022, <br> 0.031) |
| 0.975 | $\begin{aligned} & -0.068 \\ & (-0.080,-0.055) \end{aligned}$ | $\begin{aligned} & 0.034 \\ & (0.031,0.037) \end{aligned}$ | $\begin{aligned} & 0.027 \\ & (0.025,0.030) \end{aligned}$ | $\begin{aligned} & -0.103 \\ & (-0.115,-0.091) \end{aligned}$ | $\begin{aligned} & 0.022 \\ & (0.018,0.025) \end{aligned}$ | 0.022 (0.019, 0.026) |
| 1.000 | $\begin{aligned} & -0.056 \\ & (-0.070,0.043) \end{aligned}$ | $\begin{aligned} & 0.032 \\ & (0.029,0.036) \end{aligned}$ | $\begin{aligned} & 0.026 \\ & (0.023,0.028) \end{aligned}$ | $\begin{aligned} & -0.106 \\ & (-0.119,-0.093) \end{aligned}$ | $\begin{aligned} & 0.018 \\ & (0.015,0.021) \end{aligned}$ |  |

Table A8 continued
III) Bimodal Rainfall Humid Forest

| Percentile | Plot migrant head |  |  | Plot manager |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Endowment effect | Men's structural advantage | Women's structural disadvantage | Endowment effect | Men's structural advantage | Women's structural disadvantage |
| 0.025 | $\begin{aligned} & \hline-0.093 \\ & (-0.135,-0.052) \end{aligned}$ | $\begin{aligned} & \hline-0.072 \\ & (-0.080,-0.064) \end{aligned}$ | $\begin{aligned} & -0.128 \\ & (-0.141,-0.115) \end{aligned}$ | $\begin{aligned} & \hline-0.142 \\ & (-0.178,-0.107) \end{aligned}$ | $\begin{aligned} & \hline 0.051 \\ & (0.042,0.059) \end{aligned}$ | $\begin{aligned} & 0.082 \\ & (0.063,0.095) \end{aligned}$ |
| 0.050 | $\begin{aligned} & -0.112 \\ & (-0.151,-0.073) \end{aligned}$ | $\begin{aligned} & -0.072 \\ & (-0.078,-0.066) \end{aligned}$ | $\begin{aligned} & -0.122 \\ & (-0.134,-0.109) \end{aligned}$ | $\begin{aligned} & -0.151 \\ & (-0.185,-0.117) \end{aligned}$ | $\begin{aligned} & 0.049 \\ & (0.041,0.057) \end{aligned}$ | $\begin{aligned} & 0.078 \\ & (0.065,0.092) \end{aligned}$ |
| 0.075 | $\begin{aligned} & -0.124 \\ & (-0.155,-0.092) \end{aligned}$ | $\begin{aligned} & -0.069 \\ & (-0.077,-0.060) \end{aligned}$ | $\begin{aligned} & -0.111 \\ & (-0.124,-0.098) \end{aligned}$ | $\begin{aligned} & -0.146 \\ & (-0.178,-0.114) \end{aligned}$ | $\begin{aligned} & 0.044 \\ & (0.037,0.052) \end{aligned}$ | $\begin{aligned} & 0.070 \\ & (0.057,0.084) \end{aligned}$ |
| 0.100 | $\begin{aligned} & -0.129 \\ & (-0.157,-0.101) \end{aligned}$ | $\begin{aligned} & -0.064 \\ & (-0.072,-0.055) \end{aligned}$ | $\begin{aligned} & -0.098 \\ & (-0.111,-0.085) \end{aligned}$ | $\begin{aligned} & -0.131 \\ & (-0.164,-0.098) \end{aligned}$ | $\begin{aligned} & 0.035 \\ & (0.027,0.042) \end{aligned}$ | $\begin{aligned} & 0.054 \\ & (0.041,0.067) \end{aligned}$ |
| 0.125 | $\begin{aligned} & -0.126 \\ & (-0.153,-0.099) \end{aligned}$ | $\begin{aligned} & -0.057 \\ & (-0.064,-0.049) \end{aligned}$ | $\begin{aligned} & -0.084 \\ & (-0.096,-0.071) \end{aligned}$ | $\begin{aligned} & -0.106 \\ & (-0.135,-0.078) \end{aligned}$ | $\begin{aligned} & 0.025 \\ & (0.016,0.034) \end{aligned}$ | $\begin{aligned} & 0.039 \\ & (0.024,0.053) \end{aligned}$ |
| 0.150 | $\begin{aligned} & -0.117 \\ & (-0.142,-0.092) \end{aligned}$ | $\begin{aligned} & -0.049 \\ & (-0.058,-0.041) \end{aligned}$ | $\begin{aligned} & -0.070 \\ & (-0.083,-0.058) \end{aligned}$ | $\begin{aligned} & -0.070 \\ & (-0.096,-0.044) \end{aligned}$ | $\begin{aligned} & 0.016 \\ & (0.007,0.024) \end{aligned}$ | $\begin{aligned} & 0.024 \\ & (0.010,0.038) \end{aligned}$ |
| 0.175 | $\begin{aligned} & -0.099 \\ & (-0.124,-0.073) \end{aligned}$ | $\begin{aligned} & -0.041 \\ & (-0.049,-0.032) \end{aligned}$ | $\begin{aligned} & -0.056 \\ & (-0.067,-0.045) \end{aligned}$ | $\begin{aligned} & -0.032 \\ & (-0.056,-0.007) \end{aligned}$ | $\begin{aligned} & 0.002 \\ & (-0.006,0.011) \end{aligned}$ | $\begin{aligned} & 0.004 \\ & (-0.009,0.016) \end{aligned}$ |
| 0.200 | $\begin{aligned} & -0.078 \\ & (-0.096,-0.059) \end{aligned}$ | $\begin{aligned} & -0.030 \\ & (-0.038,-0.022) \end{aligned}$ | $\begin{aligned} & -0.041 \\ & (-0.052,-0.030) \end{aligned}$ | $\begin{aligned} & 0.002 \\ & (-0.017,0.021) \end{aligned}$ | $\begin{aligned} & -0.007 \\ & (-0.014,0.001) \\ & \hline \end{aligned}$ | $\begin{aligned} & -0.010 \\ & (-0.023,0.002) \end{aligned}$ |
| 0.225 | $\begin{aligned} & -0.055 \\ & (-0.072,-0.037) \end{aligned}$ | $\begin{aligned} & -0.019 \\ & (-0.026,-0.012) \end{aligned}$ | $\begin{aligned} & -0.026 \\ & (-0.036,-0.016) \end{aligned}$ | $\begin{aligned} & 0.031 \\ & (0.012,0.050) \end{aligned}$ | $\begin{aligned} & -0.014 \\ & (-0.022,-0.005) \end{aligned}$ | $\begin{aligned} & -0.021 \\ & (-0.034,-0.008) \end{aligned}$ |
| 0.250 | $\begin{aligned} & -0.035 \\ & (-0.051,-0.020) \end{aligned}$ | $\begin{aligned} & -0.010 \\ & (-0.016,-0.003) \end{aligned}$ | $\begin{aligned} & -0.013 \\ & (-0.022,-0.005) \end{aligned}$ | $\begin{aligned} & 0.050 \\ & (0.035,0.066) \end{aligned}$ | $\begin{aligned} & -0.018 \\ & (-0.024,-0.012) \end{aligned}$ | $\begin{aligned} & -0.027 \\ & (-0.036,-0.017) \end{aligned}$ |
| 0.275 | $\begin{aligned} & -0.019 \\ & (-0.033,-0.005) \end{aligned}$ | $\begin{aligned} & -0.001 \\ & (-0.007,0.005) \\ & \hline \end{aligned}$ | $\begin{aligned} & -0.001 \\ & (-0.009,0.007) \end{aligned}$ | $\begin{aligned} & 0.053 \\ & (0.039,0.066) \end{aligned}$ | $\begin{aligned} & -0.017 \\ & (-0.024,-0.011 \end{aligned}$ | $\begin{aligned} & -0.027 \\ & (-0.036,-0.018) \end{aligned}$ |
| 0.300 | $\begin{aligned} & -0.009 \\ & (-0.021,0.004) \end{aligned}$ | $\begin{aligned} & 0.006 \\ & (0.001,0.011) \end{aligned}$ | $\begin{aligned} & 0.009 \\ & (0.002,0.016) \end{aligned}$ | $\begin{aligned} & 0.048 \\ & (0.034,0.062) \end{aligned}$ | $\begin{aligned} & -0.016 \\ & (-0.020,-0.011) \end{aligned}$ | $\begin{aligned} & -0.024 \\ & (-0.031,-0.016) \end{aligned}$ |
| 0.325 | $\begin{aligned} & -0.004 \\ & (-0.015,0.006) \end{aligned}$ | $\begin{aligned} & 0.011 \\ & (0.007,0.015) \end{aligned}$ | $\begin{aligned} & 0.016 \\ & (0.010,0.023) \end{aligned}$ | $\begin{aligned} & 0.036 \\ & (0.024,0.048) \end{aligned}$ | $\begin{aligned} & -0.012 \\ & (-0.016,-0.008) \end{aligned}$ | $\begin{aligned} & -0.019 \\ & (-0.025,-0.012) \end{aligned}$ |
| 0.350 | $\begin{aligned} & -0.004 \\ & (-0.014,0.005) \end{aligned}$ | $\begin{aligned} & 0.013 \\ & (0.009,0.017) \end{aligned}$ | $\begin{aligned} & 0.020 \\ & (0.014,0.026) \end{aligned}$ | $\begin{aligned} & 0.023 \\ & (0.013,0.032) \end{aligned}$ | $\begin{aligned} & -0.010 \\ & (-0.014,-0.006) \end{aligned}$ | $\begin{aligned} & -0.015 \\ & (-0.021,-0.009) \end{aligned}$ |
| 0.375 | $\begin{aligned} & -0.007 \\ & (-0.017,0.002) \end{aligned}$ | $\begin{aligned} & 0.013 \\ & (0.010,0.016) \end{aligned}$ | $\begin{aligned} & 0.020 \\ & (0.016,0.025) \end{aligned}$ | $\begin{aligned} & 0.012 \\ & (0.003,0.021) \end{aligned}$ | $\begin{aligned} & -0.008 \\ & (-0.011,-0.005) \end{aligned}$ | $\begin{aligned} & -0.012 \\ & (-0.017,-0.007) \end{aligned}$ |
| 0.400 | $\begin{aligned} & -0.008 \\ & (-0.016,0.0003) \end{aligned}$ | $\begin{aligned} & 0.011 \\ & (0.008,0.015) \end{aligned}$ | $\begin{aligned} & 0.018 \\ & (0.013,0.023) \end{aligned}$ | $\begin{aligned} & 0.004 \\ & (-0.004,0.012) \end{aligned}$ | $\begin{aligned} & -0.009 \\ & (-0.012,-0.006) \end{aligned}$ | $\begin{aligned} & -0.014 \\ & (-0.018,-0.010) \end{aligned}$ |
| 0.425 | $\begin{aligned} & -0.007 \\ & (-0.014,0.001) \\ & \hline \end{aligned}$ | $\begin{aligned} & 0.008 \\ & (0.005,0.010) \end{aligned}$ | $\begin{aligned} & 0.013 \\ & (0.009,0.016) \end{aligned}$ | $\begin{aligned} & 0.0005 \\ & (-0.007,0.008) \end{aligned}$ | $\begin{aligned} & -0.010 \\ & (-0.013,-0.007) \end{aligned}$ | $\begin{aligned} & -0.015 \\ & (-0.019,-0.010) \end{aligned}$ |
| 0.450 | $\begin{aligned} & -0.003 \\ & (-0.009,0.004) \end{aligned}$ | $\begin{aligned} & 0.003 \\ & (0.001,0.006) \end{aligned}$ | $\begin{aligned} & 0.005 \\ & (0.001,0.010) \end{aligned}$ | $\begin{aligned} & 0.0004 \\ & (-0.007,0.008) \end{aligned}$ | $\begin{aligned} & -0.012 \\ & (-0.015,-0.009) \end{aligned}$ | $\begin{aligned} & -0.017 \\ & (-0.022,-0.013) \end{aligned}$ |
| 0.475 | $\begin{aligned} & 0.003 \\ & (-0.003,0.009) \end{aligned}$ | $\begin{aligned} & -0.001 \\ & (-0.004,0.001) \end{aligned}$ | $\begin{aligned} & -0.002 \\ & (-0.006,0.002) \end{aligned}$ | $\begin{aligned} & 0.002 \\ & (-0.004,0.008) \end{aligned}$ | $\begin{aligned} & -0.013 \\ & (-0.016,-0.011) \end{aligned}$ | $\begin{aligned} & -0.019 \\ & (-0.023,-0.015) \end{aligned}$ |
| 0.500 | $\begin{aligned} & 0.011 \\ & (0.005,0.017) \end{aligned}$ | $\begin{aligned} & -0.006 \\ & (-0.008,-0.004) \end{aligned}$ | $\begin{aligned} & -0.009 \\ & (-0.012,-0.006) \end{aligned}$ | $\begin{aligned} & 0.005 \\ & (-0.001,0.011) \end{aligned}$ | $\begin{aligned} & -0.014 \\ & (-0.016,-0.011) \end{aligned}$ | $\begin{aligned} & -0.019 \\ & (-0.022,-0.016) \end{aligned}$ |
| 0.525 | $\begin{aligned} & 0.022 \\ & (0.016,0.028) \end{aligned}$ | $\begin{aligned} & -0.010 \\ & (-0.012,-0.008) \end{aligned}$ | $\begin{aligned} & -0.016 \\ & (-0.019,-0.012) \end{aligned}$ | $\begin{aligned} & 0.006 \\ & (0.0004,0.011) \end{aligned}$ | $\begin{aligned} & -0.011 \\ & (-0.014,-0.009) \end{aligned}$ | $\begin{aligned} & -0.015 \\ & (-0.018,-0.011) \end{aligned}$ |
| 0.550 | $\begin{aligned} & 0.032 \\ & (0.026,0.038) \end{aligned}$ | $\begin{aligned} & -0.014 \\ & (-0.017,-0.011 \end{aligned}$ | $\begin{aligned} & -0.022 \\ & (-0.027,-0.018) \end{aligned}$ | $\begin{aligned} & 0.006 \\ & (0.00001,0.011) \end{aligned}$ | $\begin{aligned} & -0.007 \\ & (-0.010,-0.005) \\ & \hline \end{aligned}$ | $\begin{aligned} & -0.009 \\ & (-0.012,-0.006) \end{aligned}$ |
| 0.575 | $\begin{aligned} & 0.041 \\ & (0.036,0.046) \end{aligned}$ | $\begin{aligned} & -0.019 \\ & (-0.021,-0.017) \end{aligned}$ | $\begin{aligned} & -0.030 \\ & (-0.033,-0.026) \end{aligned}$ | $\begin{aligned} & 0.005 \\ & (-0.001,0.011) \end{aligned}$ | $\begin{aligned} & -0.001 \\ & (-0.004,0.002) \end{aligned}$ | $\begin{aligned} & -0.002 \\ & (-0.005,0.002) \end{aligned}$ |
| 0.600 | $\begin{aligned} & 0.046 \\ & (0.040,0.052) \end{aligned}$ | $\begin{aligned} & -0.023 \\ & (-0.026,-0.021) \end{aligned}$ | $\begin{aligned} & -0.037 \\ & (-0.041,-0.032) \end{aligned}$ | $\begin{aligned} & 0.005 \\ & (-0.002,0.012) \end{aligned}$ | $\begin{aligned} & 0.005 \\ & (0.002,0.008) \end{aligned}$ | $\begin{aligned} & 0.007 \\ & (0.003,0.011) \end{aligned}$ |
| 0.625 | $\begin{aligned} & 0.046 \\ & (0.041,0.052) \end{aligned}$ | $\begin{aligned} & -0.028 \\ & (-0.031,-0.025) \end{aligned}$ | $\begin{aligned} & -0.043 \\ & (-0.048,-0.039) \end{aligned}$ | $\begin{aligned} & 0.005 \\ & (-0.003,0.012) \end{aligned}$ | $\begin{aligned} & 0.011 \\ & (0.008,0.013) \end{aligned}$ | $\begin{aligned} & 0.014 \\ & (0.011,0.017) \end{aligned}$ |
| 0.650 | $\begin{aligned} & 0.039 \\ & (0.032,0.047) \end{aligned}$ | $\begin{aligned} & -0.031 \\ & (-0.034,-0.028) \end{aligned}$ | $\begin{aligned} & -0.047 \\ & (-0.052,-0.042) \\ & \hline \end{aligned}$ | $\begin{aligned} & 0.004 \\ & (-0.003,0.012) \end{aligned}$ | $\begin{aligned} & 0.015 \\ & (0.012,0.018) \end{aligned}$ | $\begin{aligned} & 0.020 \\ & (0.016,0.024) \end{aligned}$ |

Table A8 continued
III) Bimodal Rainfall Humid Forest


Table A8 continued
III) Bimodal Rainfall Humid Forest

| Percentile | Plot owner |  |  |
| :---: | :---: | :---: | :---: |
|  | Endowment effect | Men's structural advantage | Women's structural disadvantage |
| 0.325 | $\begin{aligned} & -0.012 \\ & (-0.023,-0.001) \end{aligned}$ | $\begin{aligned} & 0.011 \\ & (0.006,0.016) \end{aligned}$ | $\begin{aligned} & 0.010 \\ & (0.005,0.014) \end{aligned}$ |
| 0.350 | $\begin{aligned} & -0.012 \\ & (-0.021,-0.002) \end{aligned}$ | $\begin{aligned} & 0.017 \\ & (0.012,0.021) \end{aligned}$ | $\begin{aligned} & 0.015 \\ & (0.011,0.020) \end{aligned}$ |
| 0.375 | $\begin{aligned} & -0.009 \\ & (-0.017,-0.002) \end{aligned}$ | $\begin{aligned} & 0.021 \\ & (0.017,0.025) \end{aligned}$ | $\begin{aligned} & 0.020 \\ & (0.016,0.023) \end{aligned}$ |
| 0.400 | $\begin{aligned} & -0.004 \\ & (-0.012,0.004) \end{aligned}$ | $\begin{aligned} & 0.022 \\ & (0.018,0.026) \end{aligned}$ | $\begin{aligned} & 0.021 \\ & (0.018,0.025) \end{aligned}$ |
| 0.425 | $\begin{aligned} & 0.003 \\ & (-0.004,0.01 \text { ו }) \end{aligned}$ | $\begin{aligned} & 0.020 \\ & (0.017,0.023) \end{aligned}$ | $\begin{aligned} & 0.020 \\ & (0.017,0.023) \end{aligned}$ |
| 0.450 | $\begin{aligned} & 0.012 \\ & (0.007,0.017) \end{aligned}$ | $\begin{aligned} & 0.017 \\ & (0.014,0.020) \end{aligned}$ | $\begin{aligned} & 0.017 \\ & (0.014,0.020) \end{aligned}$ |
| 0.475 | $\begin{aligned} & 0.022 \\ & (0.017,0.027) \end{aligned}$ | $\begin{aligned} & 0.012 \\ & (0.009,0.015) \end{aligned}$ | $\begin{aligned} & 0.013 \\ & (0.010,0.016) \end{aligned}$ |
| 0.500 | $\begin{aligned} & 0.032 \\ & (0.025,0.039) \end{aligned}$ | $\begin{aligned} & 0.007 \\ & (0.004,0.009) \end{aligned}$ | $\begin{aligned} & 0.007 \\ & (0.005,0.010) \end{aligned}$ |
| 0.525 | $\begin{aligned} & 0.040 \\ & (0.034,0.046) \end{aligned}$ | $\begin{aligned} & 0.001 \\ & (-0.001,-0.004) \end{aligned}$ | $\begin{aligned} & 0.001 \\ & (-0.001,0.004) \end{aligned}$ |
| 0.550 | $\begin{aligned} & 0.045 \\ & (0.040,0.051) \end{aligned}$ | $\begin{aligned} & -0.003 \\ & (-0.005,-0.001) \end{aligned}$ | $\begin{aligned} & -0.004 \\ & (-0.006,-0.001) \end{aligned}$ |
| 0.575 | $\begin{aligned} & 0.047 \\ & (0.041,0.053) \end{aligned}$ | $\begin{aligned} & -0.008 \\ & (-0.010,-0.006) \end{aligned}$ | $\begin{aligned} & -0.010 \\ & (-0.012,-0.007) \end{aligned}$ |
| 0.600 | $\begin{aligned} & 0.046 \\ & (0.039,0.052) \end{aligned}$ | $\begin{aligned} & -0.012 \\ & (-0.014,-0.009) \end{aligned}$ | $\begin{aligned} & -0.015 \\ & (-0.018,-0.012) \end{aligned}$ |
| 0.625 | $\begin{aligned} & 0.041 \\ & (0.034,0.047) \end{aligned}$ | $\begin{aligned} & -0.015 \\ & (-0.018,-0.013) \end{aligned}$ | $\begin{aligned} & -0.019 \\ & (-0.023,-0.016) \end{aligned}$ |
| 0.650 | $\begin{aligned} & 0.032 \\ & (0.024,0.039) \end{aligned}$ | $\begin{aligned} & -0.018 \\ & (-0.021,-0.015) \end{aligned}$ | $\begin{aligned} & -0.022 \\ & (-0.026,-0.019) \end{aligned}$ |
| 0.675 | $\begin{aligned} & 0.020 \\ & (0.012,0.028) \end{aligned}$ | $\begin{aligned} & -0.018 \\ & (-0.021,-0.016) \end{aligned}$ | $\begin{aligned} & -0.023 \\ & (-0.027,-0.020) \end{aligned}$ |
| 0.700 | $\begin{aligned} & 0.007 \\ & (-0.003,0.016) \end{aligned}$ | $\begin{aligned} & -0.018 \\ & (-0.021,-0.014) \end{aligned}$ | $\begin{aligned} & -0.022 \\ & (-0.026,-0.018) \end{aligned}$ |
| 0.725 | $\begin{aligned} & -0.008 \\ & (-0.019,0.002) \end{aligned}$ | $\begin{aligned} & -0.015 \\ & (-0.018,-0.011) \end{aligned}$ | $\begin{aligned} & -0.018 \\ & (-0.022,-0.014) \end{aligned}$ |
| 0.750 | $\begin{aligned} & -0.024 \\ & (-0.034,-0.014) \end{aligned}$ | $\begin{aligned} & -0.010 \\ & (-0.013,-0.007) \end{aligned}$ | $\begin{aligned} & -0.012 \\ & (-0.015,0.009) \end{aligned}$ |
| 0.775 | $\begin{aligned} & -0.037 \\ & (-0.048,-0.025) \end{aligned}$ | $\begin{aligned} & -0.005 \\ & (-0.008,-0.002) \end{aligned}$ | $\begin{aligned} & -0.006 \\ & (-0.009,-0.002) \end{aligned}$ |
| 0.800 | $\begin{aligned} & -0.047 \\ & (-0.058,-0.035) \end{aligned}$ | $\begin{aligned} & 0.001 \\ & (-0.003,0.004) \end{aligned}$ | $\begin{aligned} & 0.001 \\ & (-0.003,0.004) \end{aligned}$ |
| 0.825 | $\begin{aligned} & -0.054 \\ & (-0.067,-0.041) \end{aligned}$ | $\begin{aligned} & 0.007 \\ & (0.004,0.010) \end{aligned}$ | $\begin{aligned} & 0.007 \\ & (0.004,0.010) \end{aligned}$ |
| 0.850 | $\begin{aligned} & -0.059 \\ & (-0.072,-0.046) \end{aligned}$ | $\begin{aligned} & 0.012 \\ & (0.008,0.015) \end{aligned}$ | $\begin{aligned} & 0.012 \\ & (0.009,0.015) \end{aligned}$ |
| 0.875 | $\begin{aligned} & -0.061 \\ & (-0.074,-0.048) \end{aligned}$ | $\begin{aligned} & 0.016 \\ & (0.012,0.019) \end{aligned}$ | $\begin{aligned} & 0.016 \\ & (0.012,0.019) \end{aligned}$ |
| 0.900 | $\begin{aligned} & -0.061 \\ & (-0.073,-0.049) \end{aligned}$ | $\begin{aligned} & 0.019 \\ & (0.015,0.022) \end{aligned}$ | $\begin{aligned} & 0.019 \\ & (0.015,0.022) \end{aligned}$ |
| 0.925 | $\begin{aligned} & -0.059 \\ & (-0.071,-0.047) \end{aligned}$ | $\begin{aligned} & 0.020 \\ & (0.017,0.023) \end{aligned}$ | $\begin{aligned} & 0.020 \\ & (0.016,0.023) \end{aligned}$ |
| 0.950 | $\begin{aligned} & -0.055 \\ & (-0.067,-0.044) \end{aligned}$ | $\begin{aligned} & 0.021 \\ & (0.018,0.023) \end{aligned}$ | $\begin{aligned} & 0.021 \\ & (0.017,0.022) \end{aligned}$ |
| 0.975 | $\begin{aligned} & -0.049 \\ & (-0.062,-0.037) \end{aligned}$ | $\begin{aligned} & 0.020 \\ & (0.017,0.023) \end{aligned}$ | $\begin{aligned} & 0.020 \\ & (0.016,0.021) \end{aligned}$ |
| 1.000 | $\begin{aligned} & -0.042 \\ & (-0.054,-0.030) \\ & \hline \end{aligned}$ | $\begin{aligned} & 0.019 \\ & (0.016,0.021) \end{aligned}$ | $\begin{aligned} & 0.019 \\ & (0.014,0.020) \end{aligned}$ |

Notes: $95 \%$ confidence intervals are in parentheses. Source: Authors' calculations based on IRAD.


[^0]:    1 For example, small-scale farming in Africa is an engine for growth, poverty reduction, and food security (in Africa, food insecurity is largely a rural concern; see Brummet et al., 2011).
    ${ }^{2}$ The ten regions of Cameroon are adamaoua, centre, east, far-north, littoral, north, north-west, south, south-west, and west. The five officially delineated agroecological zones are the Bimodal Rainfall Humid Forest, High Guinea Savannah, Monomodal Rainfall Humid Forest, Sahel, and Western Highlands. The range of environmental factors and socioeconomic characteristics in these zones may affect agricultural productivity differently.

[^1]:    ${ }^{3}$ Research and development regarding crops in Cameroon is undertaken by IRAD, which also serves as a repository of seed breeding and production and supports technology transfer while ensuring a strong linkage among farmers, extension workers, and the private sector. We thank Mrs. Dorothy Malaa for making these data available.

[^2]:    ${ }^{4}$ This data cleaning process does not raise any selection bias because we focus on the groups of interest e.g. only active producers. Furthermore, there are 179 missing dependent observations representing approximately $5.8 \%$ of our sample observations.

[^3]:    ${ }^{5}$ In order to identify the appropriate exclusion restrictions, we incorporated a set of variables that belonged to the selection equation but not to the agricultural-productivity equation.

[^4]:    ${ }^{6}$ For the computations, we use the Stata decgeng, which is available upon request.

[^5]:    ${ }^{7}$ Following past studies (Filmer \& Pritchett, 2001, and Fisher \& Kandiwa, 2014) ethnicity index was constructed using principal component analysis (PCA) based on forty ethnic groups.

[^6]:    ${ }^{8}$ The value of production is used because the majority of the plots are intercropped and area estimates for each crop are difficult to calculate.
    ${ }^{9}$ This procedure is meant to limit bias resulting from differences in self-reported and actual saleprice received by farmers. Another concern in using the farmers' own valuation of production is that farmers who do not sell crops or who sell only a few may not be able to value their production accurately. Last but not the least, the self-reported prices by farmers may be biased because of lack of storage or cultural hurdles that make it harder for farming women to bargain for higher prices.

